Patents Examined by David Porta
  • Patent number: 9995677
    Abstract: A method of inspecting a silicon article includes irradiating a silicon article with infrared radiation, transmitting a portion of the infrared radiation through the silicon article, and filtering the infrared radiation transmitted through the silicon article. Image data is acquired from the filtered infrared radiation and an image of the silicon article reconstructed from the image data. Based on the reconstructed image of the silicon article, one or more anomalies defined within the silicon article are identified.
    Type: Grant
    Filed: September 6, 2016
    Date of Patent: June 12, 2018
    Assignee: Sensors Unlimited, Inc.
    Inventor: Curt Dvonch
  • Patent number: 9995681
    Abstract: Device and methods for detecting/quantifying a fluorescent taggant in a liquid sample. Generally, the liquid samples are fuels having low concentrations (measured in ppb) of a fluorescent taggant. The detection/quantification generates a predicted concentration of the fluorescent tagging compound using a process selected from the group of a multivariate process, a background subtraction process, or a combination of both. The invention addresses the detection of an adulteration of gasoline and diesel fuels.
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: June 12, 2018
    Assignee: Authentix, Inc.
    Inventors: Jeffrey L. Conroy, Philip B. Forshee, Paul J. Cronin, Olusola Soyemi
  • Patent number: 9995629
    Abstract: A static Fourier transform spectrometer is disclosed that includes a beam splitter, a mirror device, and a collection optic. The beam splitter divides an input light beam into a first arm and a second arm, wherein the first arm is reflected by the beam splitter and the second arm passes through the beam splitter, wherein the first arm extends to the converging optical unit without deflection after reflection at the mirror device, wherein the second arm extends to the converging optical unit without deflection after passing through the beam splitter, and wherein the collection optic merges the first arm and the second arm for interference.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: June 12, 2018
    Assignee: Technische Universität München
    Inventor: Michael Schardt
  • Patent number: 9995831
    Abstract: An X-ray detector (1) includes a light detection arrangement (3) such as a CMOS photodetector, a scintillator layer (5) such as a CsI:Tl layer, a reflector layer (9) and a light emission layer (7) interposed between the scintillator layer (5) and the reflector layer (9). The light emission layer (7) may include an OLED and may have a thickness of less than 50 ?m. Thereby, a sensitivity and resolution of the X-ray detector may be improved.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: June 12, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Coen Adrianus Verschuren, Heidrun Steinhauser, Tiemen Poorter, Hugo Johan Cornelissen
  • Patent number: 9995832
    Abstract: A radiation detector includes: a radiation detecting module including a photoconductive layer containing at least one heavy metal; a voltage controller configured to detect current flowing through the photoconductive layer and control application of a voltage to the photoconductive layer based on the detected current; and a sealing part configured to seal the photoconductive layer and surround a portion of the radiation detecting module.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: June 12, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young Kim, Jae-Chul Park
  • Patent number: 9989405
    Abstract: An infrared sensor assembly for sensing infrared radiation from an object is disclosed. The infrared sensor assembly comprises a sensor array comprising a plurality of sensing elements, provided on or embedded in a substrate extending in a substrate plane. The sensor array comprises at least two infrared sensing elements, each infrared sensing element having a radiation responsive element providing a proportionate electrical signal in response to infrared radiation incident thereto and at least two blind sensing elements, at least one blind sensing element being interspersed among the at least two sensing elements, each blind sensing element being shielded from incident infrared radiation from the object and providing a proportionate electrical signal in response to parasitic thermal fluxes. The output of the sensor array is a function of the infrared sensing elements and of the blind sensing elements such that parasitic thermal fluxes are at least partly compensated for.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: June 5, 2018
    Assignee: MELEXIS TECHNOLOGIES NV
    Inventors: Carl Van Buggenhout, Ben Maes, Karel Vanroye, Stijn Reekmans
  • Patent number: 9989464
    Abstract: A non-destructive method for detecting charged particles, includes measuring a reference value of at least one physical parameter of an ion cloud confined in an ion trap; performing an injection of a sample in the ion cloud confined in the ion trap, the sample crossing the ion cloud and getting out the ion cloud without being trapped inside the ion trap; measuring a first experimental value of the at least one physical parameter of the ion cloud; and comparing the first experimental value with the reference value in order to determine the presence of at least one charged particle in the sample, or the absence of any charged particle in the sample.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: June 5, 2018
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS), UNIVERSITE D'AIX-MARSEILLE
    Inventors: Caroline Antoinette Madeleine Champenois, Laurent Hilico, Christophe Michel René Jouvet, Jofre Pedregosa Gutierrez, Martina Knoop, Claude Dedonder-Lardeux
  • Patent number: 9989410
    Abstract: A photo-detector device may include a substrate having a bottom surface. The photo-detector device may further include a photocell secured to the bottom surface of the substrate. The photo-detector device may further include a metallic block having a top portion secured to a bottom surface of the substrate to enclose the photocell, wherein an opening is formed within the metallic block that extends from the top portion of the metallic block to a bottom portion of the metallic block to form an aperture for light to travel through the metallic block to the photocell. The photo-detector device may further include a member insertable into the metallic block to vary an open area of the aperture.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: June 5, 2018
    Assignee: Heraeus Noblelight America LLC
    Inventors: Keith Andrew Helms, Timothy Allan Dombkowski, James Robert Elliott
  • Patent number: 9989409
    Abstract: A semiconductor device for measuring IR radiation is disclosed. It comprises a substrate and a cap enclosing a cavity, a sensor pixel in the cavity, comprising a first absorber for receiving said IR radiation, a first heater, first temperature measurement means for measuring a first temperature; a reference pixel in the same cavity, comprising a second absorber shielded from said IR radiation, a second heater, and second temperature measurement means for measuring a second temperature; a control circuit for applying a first/second power to the first/second heater such that the first temperature equals the second temperature; and an output circuit for generating an output signal indicative of the IR radiation based on a difference between the first and second power.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: June 5, 2018
    Assignee: MELEXIS TECHNOLOGIES NV
    Inventor: Appolonius Jacobus Van Der Wiel
  • Patent number: 9989657
    Abstract: A readout circuit for reading out an output current from a photoelectric conversion element which collectively outputs currents generated in a plurality of pixels, each of which includes an avalanche photodiode, includes a current mirror circuit configured to receive the output current and output first and second currents having magnitudes in proportion to the output current, a photon counting circuit configured to count the number of photons incident on the photoelectric conversion element on the basis of the first current, an integral circuit configured to integrate the second current to generate a voltage signal, and a signal processing unit configured to determine a magnitude of light incident on the photoelectric conversion element on the basis of a counting result output from the photon counting circuit and a magnitude of the voltage signal output from the integral circuit.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: June 5, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Shigeyuki Nakamura, Tsuyoshi Ohta, Michito Hirayanagi, Hiroki Suzuki, Shunsuke Adachi
  • Patent number: 9989654
    Abstract: A method is provided including acquiring detection events with a radiation detector including a semiconductor plate and configured to produce electrical signals in response to absorption of ionizing radiation in the semiconductor plate, wherein electrons and holes are generated responsive to absorption of the ionizing radiation. The semiconductor plate includes a first surface opposed to a second surface, with sidewalls interposed between the first surface and the second surface. A cathode electrode is disposed on the first surface and pixelated anode electrodes are disposed on the second surface. The method also includes optically coupling infrared (IR) radiation into a first portion of at least one of the sidewalls of the semiconductor plate of the radiation detector, and not coupling IR radiation into a second portion of the at least one of the sidewalls.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: June 5, 2018
    Assignee: General Electric Company
    Inventor: Arie Shahar
  • Patent number: 9989652
    Abstract: A method for fabricating a pixelated scintillator including providing a pixelated scintillator-structure and a connection-structure in such a way that the connection-structure is in mechanical contact with two adjacent pixels of the pixelated scintillator-structure. Moreover, the pixelated scintillator-structure includes a first sintering-shrinking-coefficient and the connection-structure includes a second sintering-shrinking-coefficient that is greater than the first sintering-shrinking-coefficient. Further, the pixelated scintillator-structure and the connection-structure are sintered such that a gap between two adjacent pixels of the pixelated scintillator-structure is reduced.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: June 5, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Wilhelmus Maria Jacobs, Onno Jan Wimmers, Jacques Jules Van Oekel
  • Patent number: 9989468
    Abstract: A fluorescence detecting apparatus includes an excitation light applying section that applies excitation light to a protective film containing an absorbing agent. A photomultiplier tube detects fluorescence emitted from the absorbing agent due to absorption of the excitation light. A fluorescence passing filter removes light having wavelengths other than the wavelength of the fluorescence emitted from the absorbing agent, and a reflecting mirror having a reflecting surface reflects the fluorescence emitted from the protective film toward the photomultiplier tube. This reflecting surface is formed by a part of a curved surface forming a spheroid having first and second foci. The first focus is positioned at a target area of the protective film where the excitation light is applied, and the second focus is positioned at a light detecting element included in the photomultiplier tube.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: June 5, 2018
    Assignee: Disco Corporation
    Inventors: Yusaku Ito, Senichi Ryo, Junichi Kuki
  • Patent number: 9991236
    Abstract: An LED lamp device includes a plurality of LED elements separately mounted on a substrate and effective to emit light having a first wavelength. A fluorescent element includes a fluorescent material excitable by light emitted from the LED elements to emit light of a second wavelength, and is arranged to cover each LED element with no gaps provided between the fluorescent element and the substrate. The fluorescent element is shaped in accordance with the positioning of the LED elements and the spaces defined there-between such that a proportion of light of the first wavelength with respect to light of the second wavelength is substantially uniform irrespective of light exit direction.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: June 5, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hiroshi Imamura, Ryoji Yokotani
  • Patent number: 9989658
    Abstract: A positron emission tomography (PET) data processing method comprises obtaining PET data from a PET detector, wherein the PET detector comprises an array of detector elements, and wherein the PET data is representative of a PET measurement of at least part of a subject. The method comprises identifying in the PET data a plurality of paired events, wherein each paired event comprises a first photon event in a first region of the PET detector and a second photon event in a second region of the PET detector. The first photon event comprises an energy deposition in a first detector element of the array or in a first detection region of the first detector element due to a scattering of a first photon at a first azimuthal scattering angle and an associated energy deposition by the scattered first photon in a second detector element of the array or in a second detection region of the first detector element or of the second detector element.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 5, 2018
    Assignee: THE UNIVERSITY COURT OF THE UNIVERSITY OF EDINBURGH
    Inventors: Gary Douglas Smith, Daniel Watts
  • Patent number: 9983319
    Abstract: The present disclosure relates to a detection layer on a substrate. For example, a detection layer may include perovskite crystals of the type ABX3 and/or AB2X4. A may include at least one monovalent, divalent or trivalent element from the fourth or a higher period in the periodic table and/or mixtures thereof. B may include a monovalent cation, the volumetric parameter of which is sufficient, with the respective element A, for perovskite lattice formation. X may be selected from the group consisting of anions of halides and pseudohalides. The layer may have a thickness of at least 10 ?m.
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: May 29, 2018
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Rene Fischer, Andreas Kanitz, Oliver Schmidt, Sandro Francesco Tedde
  • Patent number: 9980684
    Abstract: A collimator for a SPECT system, the collimator being adapted for absorbing and collimating gamma rays emitted by a radiation source within a field of view the collimator, said collimator having an alignment direction for directing along a longitudinal axis of a measuring cavity of the SPECT system and said collimator comprising at least one collimator body of radiation absorbing material, the collimator body comprising a plurality of apertures being formed in the collimator body, the plurality of apertures being arranged in a plurality of groups separated from each other in said alignment direction. The apertures of each group are oriented such as to define at least one projection view along a corresponding at least one projection direction. The plurality of said projection directions corresponding to each and every of said plurality of groups cover an angular range sufficiently large for sufficient image information for artifact-free reconstruction.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: May 29, 2018
    Assignee: MOLECUBES
    Inventors: Lara Da Rocha Vaz Pato, Roel Van Holen, Stefaan Vandenberghe
  • Patent number: 9985335
    Abstract: In an example arrangement an apparatus includes a semiconductor substrate having a front side surface including circuitry and a backside surface opposing the front side surface; a plurality of metal conductors formed over a front side surface of the semiconductor substrate; at least one cavity opening etched in a backside surface of the semiconductor substrate; and a radiator formed in a portion of the metal conductors and configured to radiate signals through the cavity opening in the backside surface. Methods and additional apparatus arrangements are also disclosed.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: May 29, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Swaminathan Sankaran
  • Patent number: 9983276
    Abstract: Various systems and methods for implementing and using a downhole all-optical magnetometer include downhole all-optical magnetometer sensor, including optical receiving ports that receive light pulses, a depolarizer that depolarizes received light pulses, and a polarizer that polarizes depolarized light pulses from the depolarizer. The sensor further includes a vapor-filled cell through which polarized light pulses from the polarizer are directed, wherein interactions between vapor and a magnetic field within the vapor-filled cell alter at least some of the polarized light pulses, and an optical transmitting port that directs altered light pulses from the vapor-filled cell out of the sensor.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 29, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Christopher L. Stokely
  • Patent number: 9983132
    Abstract: Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: May 29, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Eric D. Diebold, Bahram Jalali, Brandon Buckley