Patents Examined by David Porta
  • Patent number: 9968264
    Abstract: Manifestation of some physiological responses (e.g., stress, mental workload, or a headache) may involve the emergence of asymmetric thermal patterns on the face. Thus, thermal measurements of the face that are indicative of thermal asymmetry can be useful to detect such physiological responses. In one embodiment, a system includes first and second inward-facing head-mounted thermal cameras (CAM1 and CAM2, respectively) that are located less than 15 cm from the user's face, which take thermal measurements of regions on the right and left sides of the face (THROI1 and THROI2, respectively) of the user. The symmetric overlapping between the regions on the right and left sides (ROI1 and ROI2, respectively) is above 60%, and CAM1 and CAM2 do not occlude ROI1 and ROI2. Optionally, the system includes a computer that detects a physiological response based on thermal asymmetry between THROI1 and THROI2.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: May 15, 2018
    Assignee: Facense Ltd.
    Inventors: Arie Tzvieli, Gil Thieberger, Ari M Frank
  • Patent number: 9964663
    Abstract: An apparatus having: one or more infrared imagers capable of detecting light having wavelengths of 8-10 microns and 20-22 microns and a window transparent to light having wavelengths of 8-10 microns and 20-22 microns.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: May 8, 2018
    Assignees: The United States of America, as represented by the Secretary of the Navy, The University of North Carolina at Charlotte
    Inventors: Kenneth J. Ewing, Jasbinder S. Sanghera, Kevin J. Major
  • Patent number: 9964633
    Abstract: During flight, a military aircraft can use an infrared countermeasures (IRCM) system. The IRCM system can use a wide field of view sensor to detect a spectral signature of a missile and record a coarse estimate of the angular location of the missile. Upon such detection, the IRCM system can trigger a narrow field of view sensor to more finely determine the angular location of the missile. The narrow field of view sensor can emit infrared light toward the missile, which can confuse the guidance system of the missile and can help redirect the missile away from the aircraft. During time intervals when the narrow field of view sensor is not actively locating a missile, the IRCM system can use the narrow field of view sensor to form an infrared communications link with a corresponding narrow field of view sensor of a corresponding IRCM system of another aircraft.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: May 8, 2018
    Assignee: Raytheon BBN Technologies Corp.
    Inventors: James A. Freebersyser, Michael Joseph Geile
  • Patent number: 9964650
    Abstract: A radiation detector includes a plurality of pixels configured to detect radiation, and at least one of the plurality of pixels includes a radiation absorbing layer configured to convert photons incident on the radiation absorbing layer into a first electrical signal, and a photon processor including a plurality of storages configured to count and store the number of the photons based on the first electrical signal. At least one of the plurality of storages is configured to compare the first electrical signal with a first reference value to obtain a second electrical signal, and count and store the number of the photons based on a third electrical signal that is obtained based on a comparison of the second electrical signal with a second reference value.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: May 8, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Min-kook Cho
  • Patent number: 9964651
    Abstract: An ultra-thin radiation detector includes a radiation detector gas chamber having at least one ultra-thin chamber window and an ultra-thin first substrate contained within the gas chamber. The detector further includes a second substrate generally parallel to and coupled to the first substrate and defining a gas gap between the first substrate and the second substrate. The detector further includes a discharge gas between the substrates and contained within the gas chamber, where the discharge gas is free to circulate within the gas chamber and between the first and second substrates at a given gas pressure. The detector further includes a first electrode coupled to one of the substrates and a second electrode electrically coupled to the first electrode. The detector further includes a first discharge event detector coupled to at least one of the electrodes for detecting a gas discharge counting event in the electrode.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: May 8, 2018
    Assignee: Integrated Sensors, LLC
    Inventor: Peter S. Friedman
  • Patent number: 9964484
    Abstract: A grain measurement device (76) comprises a chamber (80) having an inlet (82) and an outlet (84) for grain that is to be tested. A spectrometer is equipped with a light source (89) and a detector (91) for light which was generated by the light source (89) and was transmitted through the sample. The detector (91) is connected to an analyzer (134) for wavelength-resolved analysis of the received light. A mounting (93) of one of the light source (89) or detector (91) can be moved with respect to the other (91, 89 by a drive (106), which moves the mounting (93) for purposes of conveying the sample either in the flow direction (130) or in the opposite direction, in order to break up the sample or to avoid bridging and/or jamming of the sample in the measurement chamber (80).
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: May 8, 2018
    Assignee: Deere & Company
    Inventors: Wolfram Haiges, Georg Kormann
  • Patent number: 9964446
    Abstract: A bolometer is described. A bolometer includes a superconductor-insulator-semiconductor-superconductor structure or a superconductor-insulator-semiconductor-insulator-superconductor structure. The semiconductor comprises an electron gas in a layer of silicon, germanium or silicon-germanium alloy in which valley degeneracy is at least partially lifted. The insulator or a one or both of the insulators may comprise a layer of dielectric material. The insulator or a one or both of the insulators may comprise a layer of non-degenerately doped semiconductor.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: May 8, 2018
    Assignee: The University of Warwick
    Inventors: David Gunnarsson, Evan Parker, Martin Prest, Mika Prunnila, Terence Whall
  • Patent number: 9963271
    Abstract: The invention relates to a container for sunscreen agent in which the sunscreen agent has a specific predetermined sun-protection factor, comprising a sealing device (2) by which the container (1) can be closed to make its opening (8) completely sealed, the container (1) being provided with at least one sun sensor (3) arranged to indicate the current UV intensity by changing its hue depending on the UV intensity of the radiation striking the sensor (3), said container further comprising a color-reference range (4) for comparative reading of the hue of the sensor to enable the determination of UV intensity, and time indicator (50) for determining the period of time during which a person of a specific skin type can expose his or her skin to solar radiation at said determined UV intensity without sunburn arising, provided said person has applied the sunscreen agent from the container to the skin, said sun sensor (3) being arranged as an integral part of the container (1) and being positioned such that it is comp
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: May 8, 2018
    Assignee: New Medic Era AB
    Inventor: Martina Richter
  • Patent number: 9964489
    Abstract: A method is disclosed for analyzing a thin tissue sample and adapted to be supported on a slide. The tissue sample may be placed on a slide and exposed to one or more different exogenous fluorophores excitable in a range of about 300 nm-200 nm, and having a useful emission band from about 350 nm-900 nm, and including one or more fluorescent dyes or fluorescently labeled molecular probes that accumulate in tissue or cellular components. The fluorophores may be excited with a first wavelength of UV light between about 200 nm-290 nm. An optical system collects emissions from the fluorophores at a second wavelength, different from the first wavelength, which are generated in response to the first wavelength of UV light, to produce an image for analysis.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: May 8, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Richard Levenson, Stavros Demos
  • Patent number: 9964483
    Abstract: A low-temperature safe sensor package. The package includes a housing having an internal cavity, an inlet port in communication with the internal cavity and a fluid source, and an outlet port in communication with the internal cavity. A sensor carrier is moveably arranged within the internal cavity. A spring element is arranged between the sensor carrier and a portion of the housing for biasing the sensor carrier into an operating position within the internal cavity.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 8, 2018
    Assignee: MEASUREMENT SPECIALTIES, INC.
    Inventors: John Coates, Robert Qualls
  • Patent number: 9966162
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: May 8, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Piotr Szupryczynski, A. Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 9964488
    Abstract: A method is provided for verifying the authenticity of an article which bears a security mark. The method includes irradiating the security mark with a time-varying light source, ascertaining at least one portion of the emissions spectrum of the irradiated security mark with at least one photodetector, determining the photoluminescence lifetime of the security mark by monitoring the time or frequency response of the photodetector, and verifying the authenticity of the article only if the security mark exhibits a photoluminescence which has a lifetime that falls within the range of appropriate values for each portion of the photoluminescence spectrum for which the photoluminescence lifetime of said security mark was ascertained.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: May 8, 2018
    Assignee: UbiQD, Inc.
    Inventor: Hunter McDaniel
  • Patent number: 9958298
    Abstract: An electronic device with waterproof structure includes an assembly and a manipulation member movably disposed on an outer surface of the assembly. The assembly includes a case and an optical detection module. The case defines a waterproof space and has a translucent region. The optical detection module is arranged in the waterproof space. The optical detection module has a lighting unit and a sensor array. Light emitted from the lighting unit enables to travel out of the waterproof space by penetrating through the translucent region. At least part of the manipulation member is corresponding in position to the translucent region. The lighting unit is configured to emit light onto the manipulation member, and the sensor array is configured to receive the light reflected from the manipulation member.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: May 1, 2018
    Assignee: PIXART IMAGING INC.
    Inventors: Jr-Shen Yang, Ching-Lin Chung, Yen-Min Chang
  • Patent number: 9960124
    Abstract: In certain embodiments, a mixed signal integrated circuit is provided that includes both a digital portion and an analog portion. A shield is provided that overlays one of the digital portion or the analog portion of the mixed signal integrated circuit. The shield limits propagation of signals between the digital portion and the analog portion of the mixed signal integrated circuit.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: May 1, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: James Wilson Rose, Oliver Richard Astley, Donna Marie Sherman, Jonathan David Short
  • Patent number: 9958372
    Abstract: A particle detection apparatus includes a plurality of photodetectors that detect reaction light generated at a particle irradiated with inspection light and generate electric signals in respective channels; pulse detectors that detect pulses of the electric signals in the respective channels; a correlating unit that correlates the pulse of the electric signal in a reference channel being a channel having a highest signal-to-noise (S/N) ratio, with the pulse of the electric signal in a channel other than the reference channel generated within a predetermined time difference range with respect to the pulse of the electric signal in the reference channel; and an attribute specifying unit that specifies an attribute of the particle on the basis of the correlated pulses of the electric signals.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: May 1, 2018
    Assignee: AZBIL CORPORATION
    Inventor: Yuho Matsuura
  • Patent number: 9958553
    Abstract: A method for determining a radionuclide concentration of a material is provided. The method comprises placing the material to be analyzed into a vessel, wherein the material comprises a radionuclide, wherein the material has a known volume, and wherein the vessel has a fixed geometry. The method further comprises weighing the material to be analyzed and measuring the moisture content of the material to be analyzed. The method additionally comprises placing a protective structure in the material and placing a detector in the protective structure, wherein the detector is coupled to a single-channel analyzer. The method also comprises counting the emitted radiation having a known energy over an interval of time to produce a count per time, wherein the emitted radiation is emitted from the radionuclide and then dividing the count per time by the weight of the material to produce a count per time per weight.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: May 1, 2018
    Assignee: All Clear Technologies, LLC
    Inventor: Philip Andrew Karam
  • Patent number: 9960203
    Abstract: The present disclosure relates to a radiation sensor. In one implementation, the sensor may include a radiation detector array having a plurality of pixels; at least two readout connectors having a plurality of contacts, each readout connector being configured for receiving a readout module; a routing circuit having conductors configured for routing electrical signals from each of the plurality of pixels to a corresponding contact of one of the readout connectors. The plurality of pixels is grouped in two or more groups of pixels, at least two pixels of a first group of pixels being separated by at least one pixel from another group of pixels. The routing circuit is configured for leading pixels of the first group of pixels to a first readout connector, and pixels from the other group of pixels to a second readout connector.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 1, 2018
    Assignee: Ion Beam Applications S.A.
    Inventors: David Menichelli, Michele Togno, Friedrich Friedl
  • Patent number: 9958560
    Abstract: A neutron detector system, with a detector having a pair of spaced diamond detector layers, sandwiched between outer silicon layers. In response to incident neutrons, the detector system measures pulse heights and response times, and from those measurements, calculates the carbon recoil energy and time of flight of scattered neutrons. This data is further used to calculate a “direction cone”, which represents the approximate angle of arrival of the incident neutron. These direction cones can be used to image neutron events.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: May 1, 2018
    Assignee: SOUTHWEST RESEARCH INSTITUTE
    Inventor: Keiichi Ogasawara
  • Patent number: 9956635
    Abstract: To provide a method for estimating a concentration of carboxylic acid gas, which is capable of measuring safely the concentration of carboxylic acid gas such as formic acid gas or the like in a chamber of a soldering apparatus in real time, and a soldering apparatus capable of estimating the concentration of the carboxylic acid gas in the chamber. The method includes the steps of measuring a surface temperature of a same object placed in the chamber at a same point in time by using a thermometer (first thermometer) for measuring a temperature without any influence of infrared absorption by carboxylic acid, and a radiation thermometer (second thermometer) for measuring a temperature by infrared in a wavelength region that the carboxylic acid absorbs, and estimating the concentration of the carboxylic acid gas in the chamber on the basis of a temperature difference (?Tx) between temperatures indicated by the first and second thermometers.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: May 1, 2018
    Assignee: Origin Electric Company, Limited
    Inventors: Hideo Kobayashi, Naoto Ozawa, Jun Matsuda
  • Patent number: 9958330
    Abstract: A sensor to detect information on a subject by using an electromagnetic wave includes a transmitting unit having a generating element and a first antenna, a polarization converting unit, and a receiving unit having a second antenna and a detecting device. The generating element generates an electromagnetic wave, and the first antenna emits the electromagnetic wave generated by the generating element as first polarization. The polarization converting unit converts the first polarization into second polarization by changing a polarization direction of the first polarization. The second antenna receives the second polarization, and the detecting device detects the electromagnetic wave received by the second antenna. The transmitting unit and the receiving unit are disposed on the same substrate.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: May 1, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yasushi Koyama, Toshihiko Ouchi