Patents Examined by Djura Malevic
  • Patent number: 11977154
    Abstract: A method for increasing a detection distance of a surface of an object illuminated by near-IR electromagnetic radiation, including: (a) directing near-IR electromagnetic radiation from a near-IR electromagnetic radiation source towards an object at least partially coated with a near-IR reflective coating that increases a near-IR electromagnetic radiation detection distance by at least 15% as measured at a wavelength in a near-IR range as compared to the same object coated with a color matched coating which absorbs more of the same near-IR radiation, where the color matched coating has a ?E color matched value of 1.5 or less when compared to the near-IR reflective coating; and (b) detecting reflected near-IR electromagnetic radiation reflected from the near-IR reflective coating. A system for detecting proximity of vehicles is also disclosed.
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: May 7, 2024
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Eldon L. Decker, Kristen Kruszewski, LuAnn Holsing, Stephen G. McQuown, Stuart D. Hellring, Michael Andrew Zalich
  • Patent number: 11977028
    Abstract: Disclosed herein are methods for live-cell imaging, compositions for performing the live cell imaging, and methods for making the composition. The method may comprise contacting a cell with an effective amount of a catenane, irradiating the cell, and detecting exciplex emission from the catenane within the cell. The catenane may comprise two mechanically interlocked macrocycles, each of the two macrocycles comprise an aromatic fluorophore subunit, and the aromatic fluorophores are arranged in a face-to-face [? . . . ?] stack allowing for the exciplex emission.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: May 7, 2024
    Assignees: Northwestern University, King Abdulaziz City for Science and Technology (KACST)
    Inventors: James Fraser Stoddart, Amine Garci, Yassine Beldjoudi
  • Patent number: 11977190
    Abstract: A device such as a dosimeter for detecting ionizing radiation, for example, X-ray radiation, in hospitals or the like. The device includes scintillator material configured to produce light as a result of radiation interacting with the scintillator material, and photoelectric conversion circuitry optically coupled to the scintillator material and configured to produce electrical signals via photoelectric conversion of light produced by the scintillator material. The device includes a plurality of photoelectric converters optically coupled with the scintillator material at spatially separated locations. The plurality of photoelectric converters thus produce respective electrical signals by photoelectric conversion of light produced by the scintillator material as a result of radiation interacting with the scintillator material. Improved energy linearity is thus facilitated while providing more efficient detection over the whole energy spectrum of radiation detected.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: May 7, 2024
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Sara Loi, Paolo Crema, Alessandro Freguglia
  • Patent number: 11974869
    Abstract: A system and method for the placement of a portable x-ray cassette is disclosed herein. In some embodiments, the system comprises a planar cassette element, a fabric, a collar element and a rigid sheet. The planar cassette element includes a hollow cavity disposed on a leading edge thereof and the fabric is configured to dispense from the hollow cavity, surround the planar cassette element and slide about the planar cassette element away from and toward the leading edge of the cassette element. The system allows for easy positioning of the portable x-ray cassette underneath a patient to be x-rayed.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: May 7, 2024
    Inventor: Kurt Hainze
  • Patent number: 11971350
    Abstract: The invention relates to a method for THz measuring a measurement object (3), including at least the following steps: phase or a pre-measurement, in which e.g.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: April 30, 2024
    Assignee: 1NOEX GMBH INNOVATIONEN UND AUSRÜSTUNGEN FÜR DIE EXTRUSIONSTECHNIK
    Inventor: Ralph Klose
  • Patent number: 11938346
    Abstract: A particle beam therapy apparatus has a position and posture setter that moves a movable body, that is at least one of the irradiation nozzle and the treatment table. A movement path of the movable body is determined when adapting the positional posture of the movable body from one condition among a plurality of prescribed conditions to another condition. An evaluation value is obtained for adapting the positional posture of the movable body to each of a plurality of prescribed conditions. This evaluation value is for a case of moving the movable body according to the movement path. A setting order is determined for adapting the positional posture of the movable body to each prescribed condition based on the evaluation value; and the positional posture of the movable body is adapted to each of the plurality of prescribed conditions by moving the movable body according to the determined movement path.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: March 26, 2024
    Assignee: HITACHI, LTD.
    Inventors: Hiroki Takahashi, Masanori Suzuki, Takuto Yagihashi, Takeshi Fujita, Isao Furuse, Yuko Okada
  • Patent number: 11940393
    Abstract: An X-ray inspection apparatus includes: an X-ray irradiation unit; a transport unit; an X-ray detection unit; and an X-ray shielding door. An inclined portion that is inclined downward from the one side toward the other side in the width direction when seen in the transport direction in the closed state is formed in at least a part of an inner surface of the X-ray shielding door. In the closed state, a lower end portion of the inclined portion in the vertical direction is located closer to the other side of the width direction than a position of an end portion of the transport unit on the one side of the width direction.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: March 26, 2024
    Assignee: Ishida Co., Ltd.
    Inventor: Hiroshi Hori
  • Patent number: 11933727
    Abstract: A computer-implemented system for determining an analyte in milk is provided. The system first causes irradiation of the sample with light in a plurality of discrete spectral bands. The spectral bands can be selected based on phenomenon of specific analytes. The irradiation causes a fluorescent response in the milk, which is received by light sensors and converted into digitized spectral data. The digitized spectral data is then transmitted to a machine learning system which can determine the concentration of analytes and produce an output indicative of said concentration.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: March 19, 2024
    Assignee: Labby Inc.
    Inventors: Anshuman Das, Julia Kang Somerdin
  • Patent number: 11921045
    Abstract: A holographic three-dimensional multi-spot light stimulation device is provided with: a three-dimensional imaging holographic optical system A which employs fluorescent exciting light to acquire three-dimensional fluorescence distribution information resulting from fluorescent signal light from a plurality of stimulation target objects; and a three-dimensional light stimulation holographic optical system B which employs a light stimulation hologram generated on the basis of the acquired three-dimensional fluorescence distribution information to form a plurality of light spots in space, to impart stimulation simultaneously to the plurality of stimulation target objects.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: March 5, 2024
    Assignee: National University Corporation Kobe University
    Inventors: Osamu Matoba, Xiangyu Quan, Hiroaki Wake
  • Patent number: 11913882
    Abstract: A determination of supramolecular organization in a substance includes target molecules and nanocarriers at least one of which is luminescent, based on a step of collecting of lifetime decay data of at least a standard substance pure or substantially pure where a known organization state of the target molecules and the nanocarriers is pure or substantially pure; and a step of comparing the standard data and test data from a test substance.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: February 27, 2024
    Assignees: SCUOLA NORMALE SUPERIORE, UNIVERSITÀ DEGLI STUDI DI ROMA “LA SAPIENZA”, FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    Inventors: Francesco Cardarelli, Fabio Beltram, Paolo Maria Tentori, Giulio Caracciolo, Daniela Pozzi
  • Patent number: 11906433
    Abstract: A system and method for optical sectioning in bright field microscopy (OSBM). The system includes a bright field optical microscope having automated change of focus, a substage condenser fitted with an adjustable aperture iris diaphragm, a digital camera that records the microscope image of samples, and one or more digital computers to perform digital image processing. The OSBM method comprises operating the microscope to Kohler illumination, using the iris diaphragm of the condenser to generate contrast in images, acquiring a Z-stack of images of the unstained sample, and applying a sequence of digital image processing filters to the Z-stack, resulting in optical sections from where the final three-dimensional (3D) image of the sample can be reconstructed by computational device. The final 3D images produced by this invention present quality comparable to that of available optical sectioning techniques that require sample labeling, such as light sheet fluorescence microscopy.
    Type: Grant
    Filed: December 14, 2021
    Date of Patent: February 20, 2024
    Assignee: Instituto Potosino de Investigación Científica y Tecnológica A.C.
    Inventor: Braulio Gutierrez Medina
  • Patent number: 11888233
    Abstract: Apparatus for generating THz (terahertz) radiation, the apparatus comprising: a substrate; a planar array of asymmetric point antennas formed on the substrate and excitable by a pump pulse of radiation to radiate THz radiation the point antennas having characteristic dimensions substantially smaller than wavelengths of the radiated THz; wherein the array comprises point antennas aligned in different directions.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: January 30, 2024
    Assignee: Ramot at Tel-Aviv University Ltd
    Inventors: Tal Ellenbogen, Shay Keren-Zur
  • Patent number: 11885743
    Abstract: An apparatus and method of inline measurement of low-concentration hydrocarbons overlaps fluorescence, scatter and absorption spectroscopy devices so as to measure scatter and absorption of fluorescing oil and the excited fluorescence itself. The apparatus includes a fitting, an input port, an output port, and a sapphire tube having a hollow interior in fluid connection with the input port and the output port. Flow medium passes through the input port, the sapphire tube, and the output port. The apparatus also includes a light emitter, a first detector, and a second detector. The light emitter can include a lens, an absorption and scatter wavelength emitter, and a fluorescence wavelength emitter. An incident absorption and scatter beam and an incident fluorescence beam from the light emitter and parallel so as to determine free hydrocarbon, dissolved hydrocarbons, and solids in a sample within the sapphire tube.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 30, 2024
    Assignee: Agar Corporation, Inc.
    Inventors: David Farchy, Vikram Siddavaram, Yonathan Dattner
  • Patent number: 11885753
    Abstract: An imaging type X-ray microscope capable of enlarging a numerical aperture even with high energy X-rays and acquiring a magnified image with sufficient intensity even in a laboratory. The imaging type X-ray microscope comprises an X-ray irradiation unit having a microfocal and high-power X-ray source and a condenser mirror for focusing and irradiating the emitted X-rays toward a sample, a sample holding unit for holding the sample, a reflecting mirror type X-ray lens unit for imaging X-rays transmitted through the sample, and an imaging unit for acquiring the imaged X-ray image, wherein each mirror constituting the condenser mirror and the reflecting mirror type X-ray lens unit has a reflecting surface formed with a multilayer film having a high reflectivity in X-rays of a specific wavelength.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: January 30, 2024
    Assignee: Rigaku Corporation
    Inventors: Kazuhiko Omote, Raita Hirose, Shuichi Kato, Yuriy Platonov
  • Patent number: 11880171
    Abstract: A fluorescence detection process begins by localizing rubidium 87 atoms within an optical (all-optical or magneto-optical) trap so that at least most of the atoms in the trap are within a cone defined by an effective angle, e.g., 8°, of a spectral filter. Within the effective angle of incidence, the filter effectively rejects (reflects or absorbs) 778 nanometer (nm) fluorescence and effectively transmits 775.8 nm fluorescence. Any 775.8 nm fluorescence arrive outside the effective angle of incidence. Thus, using an optical trap to localize the atoms within the cone enhances the signal-to-noise ratio of the fluorescence transmitted through the spectral filter and arriving a photomultiplier or other photodetector, resulting fluorescence detection signal with an enhanced S/N.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: January 23, 2024
    Assignee: ColdQuanta, Inc.
    Inventors: Evan Salim, Judith Olson, Andrew Kortyna, Dina Genkina, Flavio Cruz
  • Patent number: 11874227
    Abstract: An apparatus and method for imaging using microwave or terahertz radiation are described. The apparatus comprises: a cell comprising a vapour of atoms; one or more laser beams propagating through said cell, said one or more laser beams defining a sensing region in said cell; an imaging beam for illuminating an object receiving area for receiving an object to be imaged, said imaging beam comprising microwave or terahertz radiation; an imaging system for focusing the imaging beam to form, in use, an image of said object at said sensing region in said cell; wherein respective frequencies of said one or more laser beams and said imaging beam are such that at least some of said atoms, when subjected to radiation of both said one or more laser beams and said imaging beam, are excited to a final excited state which decays to a lower energy state by emission of optical fluorescence.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: January 16, 2024
    Assignee: The University of Durham
    Inventors: Kevin Weatherill, Charles Adams
  • Patent number: 11867626
    Abstract: Apparatus and methods for complex imaging reflectometry and refractometry using at least partially coherent light. Quantitative images yield spatially-dependent, local material information about a sample of interest. These images may provide material properties such as chemical composition, the thickness of chemical layers, dopant concentrations, mixing between layers of a sample, reactions at interfaces, etc. An incident beam of VUV wavelength or shorter is scattered off of a sample and imaged at various angles, wavelengths, and/or polarizations. The power of beam is also measured. This data is used to obtain images of a sample's absolute, spatially varying, complex reflectance or transmittance, which is then used to determine spatially-resolved, depth-dependent sample material properties.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: January 9, 2024
    Assignee: Regents of the Univ of Colorado, a body corporate
    Inventors: Christina Porter, Daniel E. Adams, Michael Tanksalvala, Elisabeth Shanblatt, Margaret M. Murnane, Henry C. Kapteyn
  • Patent number: 11869918
    Abstract: A digital quantum dot radiographic detection system described herein includes: a scintillation subsystem 202 and a semiconductor light detection subsystem 200, 200? (including a plurality of quantum dot image sensors 200a, 200b). In a first preferred digital quantum dot radiographic detection system, the plurality of quantum dot image sensors 200 is in substantially direct contact with the scintillation subsystem 202. In a second preferred digital quantum dot radiographic detection system, the scintillation subsystem has a plurality of discrete scintillation packets 212a, 212b, at least one of the discrete scintillation packets communicating with at least one of the quantum dot image sensors. The quantum dot image sensors 200 may be associated with semiconductor substrate 210 made from materials such as silicon (and variations thereof) or graphene. An optically opaque layer 220 is preferably positioned between the discrete scintillation packets, 212a, 212b.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: January 9, 2024
    Assignee: Oregon Dental, Inc.
    Inventor: Leigh E. Colby
  • Patent number: 11860031
    Abstract: A system for measuring a radiant exposure of electromagnetic radiation includes an accumulation detection module having a detector and configured to continuously monitor an electromagnetic radiation received by the detector; and an adaptive circuit configured to periodically interrogate the accumulation detection module; adjust a frequency of interrogation of the accumulation detection module based on an intensity of the electromagnetic radiation received by the detector; and autonomously transmit information related to an amount of the electromagnetic radiation received by the detector to a remote device.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: January 2, 2024
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Kyeongha Kwon, Seung Yun Heo, Anthony R. Banks, John A. Rogers
  • Patent number: 11852526
    Abstract: A sun exposure sensor for disposable or single use including a substrate having an upper surface and a lower surface; a sun exposure sensing portion disposed on the upper surface of the substrate, the sun exposure sensing portion comprising a fluorescent toner image, wherein the fluorescent toner image increasingly fades upon exposure to sunlight; a sun exposure scale disposed on the upper surface of the substrate, the sun exposure scale comprising an evaluation image for evaluating an amount of fading of the fluorescent toner image; an optional coating layer disposed over all or a portion of the upper surface of the substrate; an optional backing layer disposed over all or a portion of the lower surface of the substrate. A process for preparing the sensor using xerographic toner printing.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: December 26, 2023
    Assignee: Xerox Corporation
    Inventors: Yu Qi, Eliud Robles Flores, Judith Millner Vandewinckel, Andrew Beams