Abstract: A composition for glass, alkaline earth aluminosilicate glass, and a preparation method therefor and applications thereof. Based on the total number of moles of each component and the counting of oxides, the composition contains 68-73 mol % of SiO2, 11.5-15 mol % of Al2O3, 2-6 mol % of MgO, 2.5-7.5 mol % of CaO, 0-3 mol % of SrO, 2-7 mol % of BaO, 0-4 mol % of ZnO and 0.05-1.5 mol % of TiO2. The glass has a high strain point, a high Young's modulus, a high specific modulus, a high Vickers hardness, high chemical stability, a high refractive index and high glass formation stability, and has a lower forming temperature, a lower melting temperature, a lower thermal expansion coefficient, a lower surface tension, a lower density, and low glass manufacturing difficulty.
Type:
Grant
Filed:
April 9, 2018
Date of Patent:
August 9, 2022
Assignees:
TUNGHSU TECHNOLOGY GROUP CO., LTD., TUNGHSU GROUP CO., LTD.
Inventors:
Guangtao Zhang, Junfeng Wang, Gang Li, Peng Tian, Dongcheng Yan, Lihong Wang, Quan Zheng
Abstract: Provided is a silicate article comprising SiO2, Al2O3, Na2O, K2O, MgO and ZrO2, wherein the content of Al2O3 is 15-28 parts by weight, the content of Na2O is 13-25 parts by weight, the content of K2O is 6-15 parts by weight, the content of MgO is 7-16 parts by weight, and the content of ZrO2 is 0.1-5 parts by weight, relative to 100 parts by weight of SiO2; and M is 5-13, as calculated by the following formula: M=P1*wt (Na2O)+P2*wt (K2O)+P3*wt (MgO)+P4*wt (ZrO2)?P5*wt (Al2O3)*wt (Al2O3). In the formula, P1 has a value of 0.53, P2 has a value of 0.153, P3 has a value of 0.36, P4 has a value of 0.67, and P5 has a value of 0.018.
Abstract: New glass compositions and applications thereof are disclosed. Embodiments of the present invention relate to glass compositions, to fiber glass strands, to chopped fiber glass strands, to nonwoven mats of glass fibers, and to other products and methods. A fiber glass strand comprises a plurality of glass fibers comprising the glass composition of the present invention.
Abstract: A glass tube for sealing a metal includes a glass that contains, in terms of mass %, 50% or more of SiO2+B2O3, 0% to 10% of Al2O3, 3% to 20% of RO (R is an alkaline earth metal), and 11% to 22% of R?2O (R? is an alkali metal), and that has 10 ?l/g or less of an amount of CO2 emitted when heated from a room temperature to 1100° C.
Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
Type:
Grant
Filed:
October 24, 2019
Date of Patent:
June 28, 2022
Assignee:
CORNING INCORPORATED
Inventors:
Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
Abstract: Glass compositions and glass fibers having low dielectric constants and low dissipation factors that may be suitable for use in electronic applications and articles are disclosed. The glass fibers and compositions of the present invention may include between 48.0 to 57.0 weight percent SiO2; between 15.0 and 26.0 weight percent B2O3; between 12.0 and 18.0 weight percent Al2O3; between 3.0 and 8.0 weight percent P2O5; between 0.25 and 7.00 weight percent CaO; 5.0 or less weight percent MgO; and 6.0 or less weight percent TiO2. Further, the glass composition has a glass viscosity of 1000 poise at a temperature greater than 1350 degrees Celsius and a liquidus temperature greater than 1100 degrees Celsius.
Type:
Grant
Filed:
January 2, 2020
Date of Patent:
May 24, 2022
Assignee:
AGY HOLDING CORPORATION
Inventors:
Robert Lurie Hausrath, Anthony Vincent Longobardo
Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In an embodiment the glass composition may include from about 67 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; from about 2 mol. % to about 10 mol. % Al2O3; from about 2 mol. % to about 18 mol. % alkali oxide, wherein the alkali oxide comprises non-zero amounts of Na2O; from 0 mol. % to about 4 mol. % B2O3; and from about 0.01 mol. % to about 1 mol. % of a fining agent.
Type:
Grant
Filed:
December 21, 2018
Date of Patent:
May 10, 2022
Assignee:
CORNING INCORPORATED
Inventors:
Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
Abstract: The invention discloses a borosilicate glass with high chemical resistance and an application thereof. The borosilicate glass contains 0.25-4.0 wt % of Y2O3 based on the oxide. The borosilicate glass has a high chemical stability, a suitable linear thermal expansion coefficient and is suitable for use in the field of pharmaceutical packaging materials.
Abstract: A borate glass includes from 25.0 mol % to 70.0 mol % B2O3; from 0.0 mol % to 10.0 mol % SiO2; from 0.0 mol % to 15.0 mol % Al2O3; from 3.0 mol % to 15.0 mol % Nb2O5; from 0.0 mol % to 12.0 mol % alkali metal oxides; from 0.0 mol % to 5.0 mol % ZnO; from 0.0 mol % to 8.0 mol % ZrO2; from 0.0 mol % to 15.0 mol % TiO2; less than 0.5 mol % Bi2O3; and less than 0.5 mol % P2O5. The optical borate glass includes a sum of B2O3+Al2O3+SiO2 from 35.0 mol % to 76.0 mol %, a sum of CaO+MgO from 0.0 mol % to 35.5 mol %. The borate glass has a refractive index, measured at 587.6 nm, of greater than 1.70, a density of less than 4.50 g/cm3, and an Abbe number, VD, from 20.0 to 47.0.
Abstract: Provided is a composition for a glass fiber which has a high elastic modulus and satisfactory productivity, and can facilitate the production of a fine-count glass fiber. The composition for a glass fiber of the present invention includes, as a glass composition expressed as a mass percent in terms of oxide, 50% to 70% of SiO2, 15% to 25% of Al2O3, 3% to 13% of MgO, 3% to 15% of CaO, and 0.5% to 5% of B2O3.
Abstract: A glass having from greater than or equal to about 0.1 mol. % to less than or equal to about 20 mol. % Ho2O3, and one or more chromophores selected from V, Cr, Mn, Fe, Co, Ni, Se, Pr, Nd, Er, Yb, and combinations thereof. The amount of Ho2O3 (mol. %) is greater than or equal to 0.7 (CeO2 (mol. %)+Pr2O3 (mol. %)+Er2O3 (mol. %)). The glass can include one or more fluorescent ions selected from Cu, Sn, Ce, Eu, Tb, Tm, and combinations thereof in addition to, or in place of the chromophores. The glass can also include multiple fluorescent ions.
Type:
Grant
Filed:
January 6, 2020
Date of Patent:
April 19, 2022
Assignee:
Corning Incorporated
Inventors:
Matthew John Dejneka, Timothy James Kiczenski
Abstract: The invention relates to a glass sheet having a luminous transmission LTD4?87% and having a composition free of antimony and arsenic, comprising total iron (expressed in the form of Fe2O3) from 0.002-0.04% and erbium (expressed in the form of Er2O3) from 0.003-0.1%. The glass sheet composition further having a redox ratio ?32% and satisfying the formula 1.3*Fe2O3?Er2O3?21.87*Cr2O3?53.12*Co?2.6*Fe2O3. Such a glass sheet has a high luminous transmittance and has warm-toned to neutral colored edges and is particularly suitable due to its aesthetics as building glass or interior glass, as well as in furniture applications, as automotive glass, or as cover glass in electronic devices/displays.
Abstract: The invention relates to glass sheet having a composition comprising the following in weight percentage, expressed with respect to the total weight of glass: Total iron (expressed in the form of Fe2O3) 0.002-0.15% Selenium (expressed in the form of Se) 0.0003-0.005% Cobalt (expressed in the form of Co) 0.00005-0.0015%; the glass sheet being characterized in that: N?10.3*Fe2O3+0.11; N being defined as Formula (I). Such a glass sheet has a high luminous transmittance and has colorless/achromatic edges (very neutral in color). This invention is particularly suitable due to its aesthetics as building glass or interior glass, like for example in furniture applications.
Type:
Grant
Filed:
June 3, 2016
Date of Patent:
March 22, 2022
Assignee:
AGC GLASS EUROPE
Inventors:
Thomas Lambricht, Audrey Dogimont, Aline Degand
Abstract: A high-modulus glass fiber composition based on basalt includes components with contents in mass percentage satisfying SiO2: 53.0%-60.0%; Al2O3: 24.5%-28.0 %; MgO: 8%-15.0%; Fe2O3: 1.5%-5.5%; TiO2: 2.0%-4.0%; 0<CaO?5.0%; and 0<Na2O+K2O?2.0%.
Abstract: An optical boroaluminate glass article comprises: from greater than or equal to 10.0 mol % to less than or equal to 30.0 mol % Al2O3; from greater than or equal to 10.0 mol % to less than or equal to 55.0 mol % CaO; from greater than or equal to 10.0 mol % to less than or equal to 25.0 mol % B2O3; from greater than or equal to 0.0 mol % to less than or equal to 30.0 mol % SiO2; and from greater than or equal to 1.0 mol % to less than or equal to 20.0 mol % refractive index raising components. The optical boroaluminate glass article has a refractive index of the glass article, measured at 589.3 nm, of greater than or equal to 1.62, and a density of less than or equal to 4.00 g/cm3.
Type:
Grant
Filed:
January 9, 2019
Date of Patent:
February 15, 2022
Assignee:
Corning Incorporated
Inventors:
Bruce Gardiner Aitken, Lina Ma, John Christopher Mauro
Abstract: Compounds, compositions, articles, devices, and methods for the manufacture of light guide plates and back light units including such light guide plates made from glass. In some embodiments, light guide plates (LGPs) are provided that have similar or superior optical properties to light guide plates made from PMMA and that have exceptional mechanical properties such as rigidity, CTE and dimensional stability in high moisture conditions as compared to PMMA light guide plates.
Type:
Grant
Filed:
October 18, 2016
Date of Patent:
February 8, 2022
Assignee:
Corning Incorporated
Inventors:
Melissann Marie Ashton-Patton, Adam James Ellison, Ellen Anne King
Abstract: To provide an optical glass having the optical characteristics of a high refractive index and low dispersion, and moreover, which makes it possible to further reduce devitrification and which can be stably obtained, and a preform and an optical element using the same. The optical glass comprises, expressed in cation % (mol %), 17.0% to 42.0% of P5+, 7.0% to 30.0% of Al3+, more than 0% to 22.0% of Mg2+, more than 0% to 25.0% Ca2+, more than 0% to 30.0% of Sr2+, more than 0% to 35.0% Ba2+, and expressed in anion % (mol %), a content ratio of F? of 37.0 to 64.0%, a content ratio of O2? of 36.0 to 63.0%, a refractive index (nd) of 1.48 to 1.58, and having an Abbe number (vd) of 70 to 88, and a liquidus temperature of 800° C. or less.
Abstract: Provided is optical glass containing, in terms of mol % of cations: 10 to 60% of a La3+ component; more than 0% and up to 75% of a Ga3+ component; and 5 to 75% of a Nb5+ component, in which a total amount of the La3+ component, Ga3+ component, and Nb5+ component is 60 to 100%.
Type:
Grant
Filed:
February 22, 2019
Date of Patent:
February 1, 2022
Assignees:
THE UNIVERSITY OF TOKYO, NIKON CORPORATION
Abstract: The present invention pertains to a glass characterized by: containing 72-82% of Li+, 0-21% of Si4+, and 0-28% of B3+ in terms of cation %; and containing at least 70% and less than 100% of O2? and more than 0% and at most 30% of Cl?, containing at least 94% and less than 100% of O2? and more than 0% and at most 6% of S2?, or containing at least 64% and less than 100% of O2?, more than 0% and at most 30% of Cl?, and more than 0% and at most 6% of S2?, in terms of anion %.