Patents Examined by Elizabeth D. Wood
  • Patent number: 11684909
    Abstract: To provide a highly active structured catalyst for methanol reforming that suppresses the decline in catalytic function and has excellent catalytic function, and a methanol reforming device. A structured catalyst for methanol reforming, including: a support of a porous structure composed of a zeolite-type compound; and a catalytic substance present in the support, in which the support has channels communicating with each other, and the catalytic substance is present at least in the channels of the support.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: June 27, 2023
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takao Masuda, Yuta Nakasaka, Takuya Yoshikawa, Sadahiro Kato, Masayuki Fukushima, Hiroko Takahashi, Yuichiro Banba, Kaori Sekine
  • Patent number: 11679987
    Abstract: A family of new crystalline molecular sieves designated SSZ-91 is disclosed, as are methods for making SSZ-91 and uses for SSZ-91. Molecular sieve SSZ-91 is structurally similar to sieves falling within the ZSM-48 family of molecular sieves, and is characterized as: (1) having a low degree of faulting, (2) a low aspect ratio that inhibits hydrocracking as compared to conventional ZSM-48 materials having an aspect ratio of greater than 8, and (3) is substantially phase pure.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: June 20, 2023
    Assignee: CHEVRON U.S.A. INC.
    Inventors: Adeola Florence Ojo, Dan Xie, Yihua Zhang, Guan-Dao Lei
  • Patent number: 11673128
    Abstract: A method for preparing a molecular sieve SCR (selective catalytic reduction) catalyst and a prepared catalyst therethrough. In the method, several molecular sieves are mixed and modified by transition metal or rare-earth metal via ion exchange, then loaded Fe by equivalent-volume impregnation, and loaded Cu by one or more liquid ion exchange. This present invention, combined with several techniques, such as modification of stable molecular sieve by transition and rare-earth metal, Fe loading by equivalent-volume impregnation and Cu loading by one or more liquid ion exchange, and after through stable and effective modification and loading control, the obtained catalyst material is coated on a carrier substrate via size mixing and coating process to be prepared into an integral catalyst.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: June 13, 2023
    Assignee: Sinocat Environmental Technology Co., Ltd.
    Inventors: Zhimin Liu, Xi Feng, Yanhua Zhang, Dong Zeng, Jie Wen, Ganxue Wu, Ruifang Wang, Kuan Wei, Yun Li, Qizhang Chen, Yaoqiang Chen
  • Patent number: 11667536
    Abstract: The present invention relates to a method for the preparation of a molecular sieve of the CHA-type as well as catalytic applications thereof.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: June 6, 2023
    Assignee: Umicore AG & Co. KG
    Inventors: Peter Nicolai Ravnborg Vennestrom, Nuria Martin Garcia, Manuel Moliner Marin, Avelino Corma Canos
  • Patent number: 11666895
    Abstract: The invention includes an additive for maximizing production of olefins. The additive comprises a ZSM-5 molecular sieve, at least one inorganic oxide, and phosphorus oxide. The ZSM-5 molecular sieve has iron in the framework, and the additive comprises at least 0.5 weight percent iron, as measured as iron oxide, in the molecular sieve framework. The additive is useful for maximizing production of olefins in a FCC process.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: June 6, 2023
    Assignee: Johnson Matthey Process Technologies, Inc.
    Inventors: Mehdi Allahverdi, Paul Diddams, Charles Kanyi
  • Patent number: 11659846
    Abstract: A method of removing one or more antibiotics from a dairy product, the method involve passing the dairy product comprising an antibiotic in a first amount through a bulk comprising, relative to a total bulk weight, at least 75 wt. % of titanium oxide nanostructures, to provide the dairy product comprising the antibiotic in a second, lesser amount, wherein the nanostructures have lengths at least two-fold in excess of their width and height. Bulk materials useful in this or related methods or applications may have loosely tangled, noodle-like morphologies on sub-100 nm scale, and need not employ graphene and/or polymeric support networks in columns, generally having only titanium oxides without silicon or iron oxides.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: May 30, 2023
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Hafedh Kochkar, Nuhad Abdullah Alomair, Reem Khalid Albilali, Suhailah Saud Aljameel
  • Patent number: 11659847
    Abstract: A method of removing one or more antibiotics from a dairy product, the method involve passing the dairy product comprising an antibiotic in a first amount through a bulk comprising, relative to a total bulk weight, at least 75 wt. % of titanium oxide nanostructures, to provide the dairy product comprising the antibiotic in a second, lesser amount, wherein the nanostructures have lengths at least two-fold in excess of their width and height. Bulk materials useful in this or related methods or applications may have loosely tangled, noodle-like morphologies on sub-100 nm scale, and need not employ graphene and/or polymeric support networks in columns, generally having only titanium oxides without silicon or iron oxides.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: May 30, 2023
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Hafedh Kochkar, Nuhad Abdullah Alomair, Reem Khalid Albilali, Suhailah Saud Aljameel
  • Patent number: 11660588
    Abstract: Disclosed are a catalyst and a preparation method therefor, the catalyst being able to maintain a high production yield of C8 aromatic hydrocarbons in the process of converting a feedstock containing alkyl aromatics to C8 aromatic hydrocarbons such as mixed xylene through disproportionation/transalkylation/dealkylation while reducing a content of ethylbenzene in the products.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: May 30, 2023
    Assignee: SK Innovation Co., Ltd.
    Inventors: Sang Il Lee, Ji Hoon Lee, Young Eun Cheon, Yeon Ho Kim
  • Patent number: 11654426
    Abstract: The method for manufacturing a modified aluminosilicate includes a first step of treating an aluminosilicate with an acid, a second step of primarily calcining the treated material obtained in the first step at 550° C. to 850° C., and a third step of contacting the calcined material obtained in the second step with a liquid containing one or more Group 4 elements and/or Group 5 elements, and then drying and secondarily calcining the resultant. The modified aluminosilicate includes one or more Group 4 elements and/or Group 5 elements, and exhibits an absorbance at 300 nm in an ultraviolet visible spectrum of 1.0 or higher. The method for manufacturing aromatic dihydroxy compounds includes reacting a phenol with hydrogen peroxide in the presence of a specific modified aluminosilicate.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: May 23, 2023
    Assignee: MITSUI CHEMICALS, INC.
    Inventors: Yoshiya Matsukawa, Nobuhiko Horiuchi, Akihiro Okabe, Yoshihiro Kubota, Satoshi Inagaki
  • Patent number: 11654422
    Abstract: To provide a structured catalyst for catalytic cracking or hydrodesulfurization that suppresses decline in catalytic activity, achieves efficient catalytic cracking, and allows simple and stable obtaining of a substance to be modified. The structured catalyst for catalytic cracking or hydrodesulfurization (1) includes a support (10) of a porous structure composed of a zeolite-type compound and at least one type of metal oxide nanoparticles (20) present in the support (10), in which the support (10) has channels (11) that connect with each other, the metal oxide nanoparticles (20) are present at least in the channels (11) of the support (10), and the metal oxide nanoparticles (20) are composed of a material containing any one or two more of the oxides of Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd, and Ru.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: May 23, 2023
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takao Masuda, Yuta Nakasaka, Takuya Yoshikawa, Sadahiro Kato, Masayuki Fukushima, Hiroko Takahashi, Yuichiro Banba, Kaori Sekine
  • Patent number: 11655157
    Abstract: A functional structural body that can realize a prolonged life time by suppressing the decrease in function and that can fulfill resource saving without requiring a complicated replacement operation is provided. A functional structural body includes a skeletal body of a porous structure composed of a zeolite-type compound; and at least one solid acid present in the skeletal body, the skeletal body has channels connecting with each other, and the solid acid is present at least in the channels of the skeletal body.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: May 23, 2023
    Assignees: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takao Masuda, Yuta Nakasaka, Takuya Yoshikawa, Sadahiro Kato, Masayuki Fukushima, Kojiro Inamori, Hiroko Takahashi, Yuichiro Banba, Kaori Sekine
  • Patent number: 11648542
    Abstract: To provide a functional structural body that can realize ong life time by suppressing the decline in function of the functional substance and that can attempt to save resources without requiring a complicated replacement operation, and to provide a method for making the functional structural body. The functional structural body (1) includes a skeletal body (10) of a porous structure composed of a zeolite-type compound, and at least one functional substance (20) present in the skeletal body (10), the skeletal body (10) has channels (11) connecting with each other, and the functional substance is present at least the channels (11) of the skeletal body (10).
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: May 16, 2023
    Assignees: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takao Masuda, Yuta Nakasaka, Takuya Yoshikawa, Sadahiro Kato, Masayuki Fukushima, Kojiro Inamori, Hiroko Takahashi, Yuichiro Banba, Kaori Sekine
  • Patent number: 11648541
    Abstract: Catalysts and method of preparing the catalysts are disclosed. One of the catalysts includes a zeolite support, a Group VIII metal on the zeolite support, and at least two halides bound to the zeolite support, to the Group VIII metal, or to both, and can have an average crush strength greater than 11.25 lb based on at least two samples of pellets of the catalyst measured in accordance with ASTM D4179.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: May 16, 2023
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: An-Hsiang Wu, Joseph Bergmeister
  • Patent number: 11648543
    Abstract: Provide is a functional structural body that can suppress aggregation of metal oxide nanoparticles and prevent functional loss of metal oxide nanoparticles, and thus exhibit a stable function over a long period of time. A functional structural body (1) includes: a skeletal body (10) of a porous structure composed of a zeolite-type compound; and at least one type of metal oxide nanoparticles (20) containing a perovskite-type oxide present in the skeletal body (10), the skeletal body (10) having channels (11) that connect with each other, and the metal oxide nanoparticles (20) being present at least in the channels (11) of the skeletal body (10).
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: May 16, 2023
    Assignees: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takao Masuda, Yuta Nakasaka, Takuya Yoshikawa, Sadahiro Kato, Masayuki Fukushima, Kojiro Inamori, Hiroko Takahashi, Yuichiro Banba, Kaori Sekine
  • Patent number: 11648540
    Abstract: The present disclosure provides a modified catalyst, and preparation method and a method for producing aromatic hydrocarbons by aromatization of olefins using the modified catalyst. The modified catalyst comprises an acidic molecular sieve and an olefin aromatization active metal component, the total acid amount of the catalyst as measured by NH3-TPD method is not higher than 0.35 mmol/g, and ratio of the strong acid to weak acid is within a range of 0.8-1.2.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: May 16, 2023
    Assignees: China Energy Investment Corporation Limited, National Institute of Clean-and-Low-Carbon Energy
    Inventors: Aihua Zhang, Hui Wang, Junjun Shan, Joshua Miles, Lisa Nguyen, Louis Guillen, Amin Sardar, Hua Liu
  • Patent number: 11648538
    Abstract: A functional structural body includes a skeletal body of a porous structure composed of a zeolite-type compound, and at least one type of metallic nanoparticles present in the skeletal body, the skeletal body having channels connecting with each other, the metallic nanoparticles being present at least in the channels of the skeletal body.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: May 16, 2023
    Assignees: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takao Masuda, Yuta Nakasaka, Takuya Yoshikawa, Sadahiro Kato, Masayuki Fukushima, Kojiro Inamori, Hiroko Takahashi, Yuichiro Banba, Kaori Sekine
  • Patent number: 11648539
    Abstract: Disclosed is a method for preparing a catalyst for a gasoline reaction of dimethyl ether that includes reacting a silica source, an aluminum source, and a structural derivative to synthesize a zeolite sol, mixing an alcohol with an organic template to form an emulsion phase, and adding a zeolite sol to the emulsion phase to perform a reaction.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: May 16, 2023
    Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATION, RESEARCH & BUSINESS FOUDATION SUNGKYUNKWAN UNI.
    Inventors: Chae Hwan Hong, Jin Woo Choung, Young Gul Hur, Jong Wook Bae, Jong Jin Kim
  • Patent number: 11633721
    Abstract: A multilayer supported oxidative coupling of methane (OCM) catalyst composition (support, first single oxide layer, one or more mixed oxide layers, optional second single oxide layer) characterized by formula AaZbEcDdOx/support; A is alkaline earth metal; Z is first rare earth element; E is second rare earth element; D is redox agent/third rare earth element; the first, second, third rare earth element are not the same; a=1.0; b=0.1-10.0; c=0.1-10.0; d=0-10.0; x balances oxidation states; first single oxide layer (Zb1Ox1, b1=0.1-10.0; x1 balances oxidation states) contacts support and one or more mixed oxide layers; one or more mixed oxide layers (Aa2Zb2Ec2Dd2Ox2, a2=1.0; b2=0.1-10.0; c2=0.1-10.0; d2=0-10.0; x2 balances oxidation states; AaZbEcDdOx and Aa2Zb2Ec2Dd2Ox2 are different) contacts first single oxide layer and optionally second single oxide layer, and second single oxide layer (AO), when present, contacts one or more mixed oxide layers and optionally first single oxide layer.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 25, 2023
    Assignee: Sabic Global Technologies, B.V.
    Inventors: Wugeng Liang, Luanyi Li, Hector Perez, Pankaj Gautam, David West
  • Patent number: 11634335
    Abstract: The present invention provides an iron-loaded aluminosilicate zeolite having a maximum pore opening defined by eight tetrahedral atoms and having the framework type CHA, AEI, AFX, ERI or LTA, wherein the iron (Fe) is present in a range of from about 0.5 to about 5.0 wt. % based on the total weight of the iron-loaded aluminosilicate zeolite, wherein an ultraviolet-visible absorbance spectrum of the iron-loaded synthetic aluminosilicate zeolite comprises a band at approximately 280 nm, wherein a ratio of an integral, peak-fitted ultraviolet-visible absorbance signal measured in arbitrary units (a.u.) for the band at approximately 280 nm to an integral peak-fitted ultraviolet-visible absorbance signal measured in arbitrary units (a.u.) for a band at approximately 340 nm is >about 2.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: April 25, 2023
    Assignees: Johnson Matthey Public Limited Company, Johnson Matthey Catalysts (Germany) Gmbh
    Inventors: Juergen Bauer, John Leonello Casci, Ralf Dotzel, Joerg Muench, Ralitsa Purova, Wilhelm Schwieger, Ameen Shahid, Selvam Thangaraj, Tobias Weissenberger
  • Patent number: 11628448
    Abstract: The invention provides a method for the production of a zeolite particle composition which has optimized characteristics, such as enhanced adsorption and specific ion exchange properties. A method and an apparatus for producing improved zeolite particle compositions are provided, where the particles are treated with an oxygen-containing gas during micronisation. The zeolite particle compositions can be used in a method for treatment of the human or animal body by therapy and/or prophylaxis, and specifically in a method of treating or preventing conditions of the human or animal body or symptoms of these conditions that are related to heavy metals, endotoxins, exotoxins, and/or bacterial, viral or parasitic intoxications in or of the digestive system, mucosal surfaces or the skin. Also, new zeolite particle compositions can be used as food additive, as filter for purification of water, in packaging materials, or as cosmetic ingredient.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: April 18, 2023
    Inventor: Jakob Hraschan