Patents Examined by Elizabeth D. Wood
  • Patent number: 10723677
    Abstract: The present invention relates to a zeolitic granular material having a connected zeolitic structure across the entire volume thereof, having high mechanical resistance to crushing in the bed, and optimised material transfer in the macro-mesopores. The invention also relates to the method for preparing said zeolitic granular material, as well as to the use thereof as an adsorbent material in co-current or counter-current liquid phase separation methods, typically in a simulated mobile bed.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: July 28, 2020
    Assignees: ARKEMA FRANCE, IFP ENERGIES NOUVELLES
    Inventors: Catherine Laroche, Ludivine Bouvier, Philibert Leflaive, Cecile Lutz, Anne-Sophie Gay, Florent Moreau
  • Patent number: 10722873
    Abstract: The invention relates to a catalyst composition which comprises a carrier material component and at least one metal component that is supported on the carrier material component. The carrier material component comprises a ZSM-12 type zeolite, a EU-1 type zeolite, and an inorganic binder. The metal component may include a Group VIII metal. The invention further relates to a process for preparing the catalyst and using it in a process for the isomerisation of alkylaromatics.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: July 28, 2020
    Assignee: Shell Oil Company
    Inventors: Menno Feico Van Der Hauw, Richard Berend Mauer
  • Patent number: 10710058
    Abstract: Disclosed herein is a process for preparing a hydrocracking catalyst, comprising (i) combining a zeolite, a binder, water and a hydrogenating metal compound which is a complex or a salt of a hydrogenating metal to obtain a mixture, wherein the zeolite has not been treated with a phosphorus-containing compound and the zeolite has a silica to alumina molar ratio of 5-200; (ii) forming the mixture into a shaped body; and (iii) calcining the shaped body to form the catalyst.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: July 14, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Ashim Kumar Ghosh, Alla Khanmamedova
  • Patent number: 10710059
    Abstract: The present disclosure relates to processes for formation of a molecular sieve, particularly a metal-promoted molecular sieve, and more particularly an Iron(III) exchanged zeolite. Preferably, the zeolite is of the chabazite form or similar structure. The processes can include combining a zeolite with Iron(III) cations in an aqueous medium. The process can be carried out at a pH of less than about 7, and a buffering material can be used with the aqueous medium. The processes beneficially result in Iron exchange that can approach 100% along with removal of cations (such as sodium, NH4, and H) from the zeolite. An Iron(III)-exchanged zeolite prepared according to the disclosed processes can include about 2,000 ppm or less of cation and about 1% by weight or greater of Iron(III). The disclosure also provides catalysts (e.g., SCR catalysts) and exhaust treatment systems including the Iron(III)-exchanged zeolite.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: July 14, 2020
    Assignee: BASF Corporation
    Inventors: Qi Fu, Barbara Slawski, Peter Pfab
  • Patent number: 10695756
    Abstract: A catalyst for the carbonylation of dimethyl ether to methyl acetate. The catalyst comprises a zeolite, such as a mordenite zeolite, at least one Group IB metal, such as copper, and/or at least one Group VIII metal, such as iron, and at least one Group IIB metal, such as zinc. Such a catalyst with combined metals provides enhanced catalytic activity, improved stability, and improved selectivity to methyl acetate, and does not require a halogen promoter, as compared to a metal-free or copper only zeolite.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: June 30, 2020
    Assignee: Enerkem, Inc.
    Inventors: Allen Artur Carl Reule, Natalia Semagina, Esteban Chornet
  • Patent number: 10688445
    Abstract: A zeolite membrane structure includes a porous support, and a zeolite membrane. The zeolite membrane has a first zeolite layer located in a surface of the porous support, and a second zeolite layer located outside of the surface of the porous support and integrally formed with the first zeolite layer. The porous support has an outermost layer in which the first zeolite layer is located. An average thickness of the first zeolite layer is less than or equal to 5.4 micrometers. An average pore diameter of the outermost layer is greater than or equal to 0.050 micrometers and less than or equal to 0.150 micrometers.
    Type: Grant
    Filed: September 12, 2017
    Date of Patent: June 23, 2020
    Assignee: NGK Insulators, Ltd.
    Inventors: Ryujiro Nagasaka, Hideyuki Suzuki, Akimasa Ichikawa, Shinji Nakamura
  • Patent number: 10682634
    Abstract: A method of manufacturing a modified zeolite catalyst may include reacting a zeolite with a metal salt to form a zeolite/metal salt complex. The zeolite may be a ZSM-5 or ZSM-11. The method may include heating the zeolite/metal salt complex to form an intermediate modified zeolite, and reacting the intermediate modified zeolite with an acid. The method may include ion exchanging the intermediate modified zeolite following the reaction with the acid to form a modified zeolite catalyst.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: June 16, 2020
    Assignee: REACTION 35, LLC
    Inventor: Peter K. Stoimenov
  • Patent number: 10675616
    Abstract: A method of making a multifunctional catalyst for upgrading pyrolysis oil includes contacting a hierarchical mesoporous zeolite support with a solution including at least a first metal catalyst precursor and a second metal catalyst precursor, each or both of which may include a heteropolyacid. The hierarchical mesoporous zeolite support may have an average pore size of from 2 nm to 40 nm. Contacting the hierarchical mesoporous zeolite support with the solution deposits or adsorbs the first metal catalyst precursor and the second catalyst precursor onto outer surfaces and pore surfaces of the hierarchical mesoporous zeolite support to produce a multifunctional catalyst precursor. The method further includes removing excess solution and calcining the multifunctional catalyst precursor to produce the multifunctional catalyst comprising at least a first metal catalyst and a second metal catalyst deposited on the outer surfaces and pore surfaces of the hierarchical mesoporous zeolite support.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: June 9, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Miao Sun, Ke Zhang, Veera Venkata R Tammana
  • Patent number: 10675586
    Abstract: The present disclosure describes hybrid binary catalysts (HBCs) that can be used as engine aftertreatment catalyst compositions. The HBCs provide solutions to the challenges facing emissions control. In general, the HBCs include a porous primary catalyst and a secondary catalyst. The secondary catalyst partial coats the surfaces (e.g., the internal porous surface and/or the external surface) of the primary catalyst resulting in a hybridized composition. The synthesis of the HBCs can provide a primary catalyst whose entire surface, or portions thereof, can be coated with the secondary catalyst.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: June 9, 2020
    Assignee: PACCAR INC
    Inventor: Randal A. Goffe
  • Patent number: 10675613
    Abstract: Paraffin isomerization catalyst comprising of from 0.01 to 5 wt. % of a Group VIII noble metal on a carrier containing alumina and zeolite beta having a silica to alumina molar ratio (SAR) of from 5 to 15 and process employing such catalyst for isomerization of a hydrocarbon feed containing paraffins having of from 4 to 8 carbon atoms.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: June 9, 2020
    Assignee: Shell Oil Company
    Inventors: Monique Van der Zon, Vincent Rogers, Hong-Xin Li, William Edward Cormier, Bjorn Moden, Bart Pelgrim, Wiebe S. Kijlstra
  • Patent number: 10669491
    Abstract: Methods are provided for making base metal catalysts with improved activity. After forming catalyst particles based on a support comprising a zeolitic molecular sieve, the catalyst particles can be impregnated with a solution comprising a) metal salts (or other precursors) for a plurality of base metals and b) an organic dispersion agent comprising 2 to 10 carbons. The impregnated support particles can be dried to form a base metal catalyst, and then optionally sulfided to form a sulfided base metal catalyst. The resulting (sulfided) base metal catalyst can have improved activity for cloud point reduction and/or for improved activity for heteroatom removal, relative to a base metal dewaxing catalyst prepared without the use of a dispersion agent.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 2, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Chuansheng Bai, Wenyih Frank Lai, Paul Podsiadlo, William W. Lonergan
  • Patent number: 10661258
    Abstract: The invention relates to treating a molecular sieve prepared by at least one in situ selectivation sequence wherein graphitic coke is adhered to said molecular sieve, which is useful in a toluene disproportionation process.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: May 26, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Todd E. Detjen, Xiaobo Zheng, Robert G. Tinger
  • Patent number: 10654031
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: May 19, 2020
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 10646848
    Abstract: Disclosed herein are novel RHO zeolites useful as kinetically selective adsorbents for oxygen and/or nitrogen. The adsorbents can be used in pressure swing adsorption processes for selectively adsorbing oxygen and/or nitrogen from feed streams such as an air stream or crude argon stream. Also disclosed are novel methods of preparing RHO zeolites, including in particular mixed-cation RHO zeolites.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: May 12, 2020
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Magdalena M. Lozinska, Paul A. Wright, Elliott L. Bruce, William Jack Casteel, Jr., Shubhra Jyoti Bhadra, Robert Quinn, Garret Chi-Ho Lau, Erin Marie Sorensen, Roger Dean Whitley, Timothy Christopher Golden, Mohammad Ali Kalbassi
  • Patent number: 10647585
    Abstract: The present invention relates to a method for the preparation of a synthetic crystalline zeolite material, to said synthetic crystalline zeolite material, and to the uses of said method and said synthetic crystalline zeolite material in various applications.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: May 12, 2020
    Assignee: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Valentin Valtchev, Jean-Pierre Gilson, Zhengxing Qin
  • Patent number: 10639619
    Abstract: Catalyst compositions with improved alkylation activity and corresponding methods for making such catalyst compositions are provided. The catalyst(s) correspond to solid acid catalysts formed by exposing a catalyst precursor with a zeolitic framework structure to a molten metal salt that includes fluorine, such as a molten metal fluoride. The resulting fluorinated solid acid catalysts can have improved alkylation activity while having a reduced or minimized amount of structural change due to the exposure to the molten metal fluoride. This is in contrast to fluorinated solid acid catalysts that are exposed to higher severity forms of fluorination, such as exposure to ammonium fluoride or HF. SnF2 is an example of a suitable molten metal fluoride.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: May 5, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Matthew S. Ide, Jihad M. Dakka, Quddus A. Nizami, Mobae Afeworki
  • Patent number: 10639622
    Abstract: A method of making a multifunctional catalyst for upgrading pyrolysis oil includes contacting a hierarchical mesoporous zeolite support with a solution including at least a first metal catalyst precursor and a second metal catalyst precursor, each or both of which may include a heteropolyacid. The hierarchical mesoporous zeolite support may have an average pore size of from 2 nm to 40 nm. Contacting the hierarchical mesoporous zeolite support with the solution deposits or adsorbs the first metal catalyst precursor and the second catalyst precursor onto outer surfaces and pore surfaces of the hierarchical mesoporous zeolite support to produce a multifunctional catalyst precursor. The method further includes removing excess solution and calcining the multifunctional catalyst precursor to produce the multifunctional catalyst comprising at least a first metal catalyst and a second metal catalyst deposited on the outer surfaces and pore surfaces of the hierarchical mesoporous zeolite support.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: May 5, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Miao Sun, Ke Zhang, Veera Venkata R Tammana
  • Patent number: 10632453
    Abstract: Methods, catalysts, and corresponding catalyst precursors are provided for performing dewaxing of diesel or distillate boiling range fractions. The dewaxing methods, catalysts, and/or catalyst precursors can allow for production of diesel boiling range fuels with improved cold flow properties at desirable yields. The catalysts and/or catalyst precursors can correspond to supported base metal catalysts and/or catalyst precursors that include at least two Group 8-10 base metals supported on the catalyst, such as a catalyst/catalyst precursor including both Ni and Co as supported metals along with a Group 6 metal (i.e., Mo and/or W). The support can correspond to a support including a zeolitic framework structure. The catalyst precursors can be formed, for example, by impregnating a support including a zeolitic framework structure with an impregnation solution that also includes a dispersion agent.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: April 28, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Paul Podsiadlo, Stephen J. McCarthy
  • Patent number: 10618855
    Abstract: Synthesis of aromatic hydrocarbons from synthesis gas in a fixed bed or a moving bed reactor loaded with a composite catalyst comprising Catalyst Component A and Catalyst Component B mixed via a mechanical mixing mode, wherein the active ingredient of the Catalyst Component A is active metal oxides; and the Catalyst Component B is one or both of ZSM-5 zeolite and metal modified ZSM-5; the pressure of the synthesis gas is 0.1-6 MPa; the reaction temperature is 300-600° C.; and the space velocity is 500-8000 h?1. The reaction process has a high product yield and selectivity, with the selectivity of aromatics reaching 50-85%, while the selectivity of the methane byproduct is less than 15%.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: April 14, 2020
    Assignee: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Xiulian Pan, Junhao Yang, Feng Jiao, Yifeng Zhu, Xinhe Bao
  • Patent number: 10618040
    Abstract: An object of the present invention is to provide a chabazite zeolite which does not easily peel from a substrate such as a honeycomb body even when the substrate has been coated therewith, while exhibiting excellent durability. The present invention relates to a chabazite zeolite for substrate coating, which includes (i) to (iv) below. (i) Si and Al are contained, (ii) an SiO2/Al2O3 molar ratio is in a range of 5<SiO2/Al2O3<10, (iii) an average crystal size is in a range of 0.05 ?m<average crystal size<1 ?m, and (iv) in a spectrum measured by 27Al-NMR, a ratio (ANFA/ATotal) between an area (ATotal) of all peaks in the spectrum and an area (ANFA) of peaks assigned to Al other than tetracoordinated Al is in a range of 20%?(ANFA/ATotal)?70%.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: April 14, 2020
    Assignee: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Yoko Yamaguchi, Shunji Tsuruta, Akira Nakashima