Patents Examined by Elizabeth D. Wood
  • Patent number: 11572283
    Abstract: A molecular sieve has a silica/alumina molar ratio of 100-300, and has a mesopore structure. One closed hysteresis loop appears in the range of P/P0=0.4-0.99 in the low temperature nitrogen gas adsorption-desorption curve, and the starting location of the closed hysteresis loop is in the range of P/P0=0.4-0.7. The catalyst formed from the molecular sieve as a solid acid not only has a good capacity of isomerization to reduce the freezing point, but also can produce a high yield of the product with a lower pour point. The process for preparing the catalyst involves steps including crystallization, filtration, calcination, and hydrothermal treatment.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: February 7, 2023
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yunfei Bi, Guofu Xia, Mingfeng Li, Qinghe Yang, Weiguo Huang, Qingzhou Guo, Wenxiu Fang, Luqiang Wang, Hongbao Li, Honghui Li, Jie Gao
  • Patent number: 11560522
    Abstract: A method of preparing hydrodesulfurization catalysts having cobalt and molybdenum sulfide deposited on a support material containing mesoporous silica. The method utilizes a sulfur-containing silane that dually functions as a silica source and a sulfur precursor. The method involves an one-pot strategy for hydrothermal treatment and a single-step calcination and sulfidation procedure. The application of the hydrodesulfurization catalysts in treating a hydrocarbon feedstock containing sulfur compounds to produce a desulfurized hydrocarbon stream is also specified.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: January 24, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Khalid R. Alhooshani, Saheed Adewale Ganiyu, Abdulkadir Tanimu
  • Patent number: 11559795
    Abstract: A hydrogenolysis bimetallic supported catalyst comprising a first metal, a second metal, and a zeolitic support; wherein the first metal and the second metal are different; and wherein the first metal and the second metal can each independently be selected from the group consisting of iridium (Ir), platinum (Pt), rhodium (Rh), ruthenium (Ru), palladium (Pd), molybdenum (Mo), tungsten (W), nickel (Ni), and cobalt (Co).
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: January 24, 2023
    Assignee: Sabic Global Technologies, B.V.
    Inventors: Prasanna Dasari, MyatNoeZin Myint, Katherine Barton, Neeta Kulkarni, Ashim Ghosh, Raul Velasco Pelaez, Dustin Fickel, Heng Shou
  • Patent number: 11554359
    Abstract: A method for producing a crystalline film comprising zeolite and/or zeolite-like crystals on a porous substrate is described. The method has the steps of: providing a porous support; modifying at least a surface of the top-layer of said porous support by treatment with a composition having one or more cationic polymer(s); rendering at least the outer surface of said porous support hydrophobic by treatment with a composition having one or more hydrophobic agent(s); subjecting said treated porous support to a composition having zeolite and/or zeolite-like crystals thereby depositing and attaching zeolite and/or zeolite-like crystals on said treated porous support, and growing a crystalline film of zeolite and/or zeolite-like crystals on said treated porous support and calcination. Crystalline films find use in a variety of fields such as in the production of membranes, catalysts etc.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: January 17, 2023
    Assignee: ZEOMEM SWEDEN AB
    Inventors: Jonas Hedlund, Allan Holmgren, Liang Yu
  • Patent number: 11549071
    Abstract: A method of preparing hydrodesulfurization catalysts having cobalt and molybdenum sulfide deposited on a support material containing mesoporous silica. The method utilizes a sulfur-containing silane that dually functions as a silica source and a sulfur precursor. The method involves an one-pot strategy for hydrothermal treatment and a single-step calcination and sulfidation procedure. The application of the hydrodesulfurization catalysts in treating a hydrocarbon feedstock containing sulfur compounds to produce a desulfurized hydrocarbon stream is also specified.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: January 10, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Khalid R. Alhooshani, Saheed Adewale Ganiyu, Abdulkadir Tanimu
  • Patent number: 11547989
    Abstract: The present disclosure provides an improved shaped catalyst containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such shaped catalysts for the production of maleic anhydride.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: January 10, 2023
    Assignee: Huntsman Petrochemical LLC
    Inventors: Chunli Zhao, Bennie Albert Horrell, Jr., William S. Frazee
  • Patent number: 11549070
    Abstract: A method of preparing hydrodesulfurization catalysts having cobalt and molybdenum sulfide deposited on a support material containing mesoporous silica. The method utilizes a sulfur-containing silane that dually functions as a silica source and a sulfur precursor. The method involves an one-pot strategy for hydrothermal treatment and a single-step calcination and sulfidation procedure. The application of the hydrodesulfurization catalysts in treating a hydrocarbon feedstock containing sulfur compounds to produce a desulfurized hydrocarbon stream is also specified.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: January 10, 2023
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Khalid R. Alhooshani, Saheed Adewale Ganiyu, Abdulkadir Tanimu
  • Patent number: 11541379
    Abstract: A catalyst composition for treating an exhaust gas, the catalyst composition comprising a molecular sieve, the molecular sieve comprising exchanged copper and exchanged manganese.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: January 3, 2023
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Yannick Bidal, Joseph Fedeyko, Alexander Green, Matthew Harris, Jing Lu, Nicholas McNamara
  • Patent number: 11542171
    Abstract: The present invention relates to a method for preparing ZSM-5 zeolite. The present invention can provide a method for preparing ZSM-5 zeolite comprising the steps of: preparing a first solution in a solution state by heating a mixture comprising a silica source, an alumina source, a neutralizing agent and a crystalline ZSM-5 nucleus; preparing a reaction mother liquid by mixing a second solution comprising salts into the first solution; and continuously crystallizing by continuously supplying the reaction mother liquid to a hydrothermal synthesis reactor, wherein formula [1] below is satisfied. 0.20?Wa/Wb?0.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: January 3, 2023
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Na Young Kang, Yong Ki Park, Chang Hwan Kim, Yu Jin Lee
  • Patent number: 11541378
    Abstract: Molecular sieves comprising intergrowths of cha and aft having an “sfw-GME tail”, at least one structure directing agent (SDA) within the framework of the molecular sieve, an intergrowth of CHA and GME framework structures, cha cavities, and aft cavities are described. A first SDA comprising either an N,N-dimethyl-3,5-dimethylpiperidinium cation or a N,N-diethyl-2,6-dimethylpiperidinium cation is required. A second SDA, which can further be present, is a CHA or an SFW generating cation. The amount of the second SDA-2 used can change the proportion of the components in the cha-aft-“sfw-GME tail”. Activated molecular sieves formed from SDA containing molecular sieves are also described. Compositions for preparing these molecular sieves are described. Methods of preparing a SDA containing JMZ-11, an activated JMZ-11, and metal containing activated JMZ-11 are described.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: January 3, 2023
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Mervyn Shannon, Alessandro Turrina, Sanyuan Yang
  • Patent number: 11529618
    Abstract: The present invention relates to catalyst comprising one or more metal oxides and/or metalloid oxides and a zeolitic material having the CHA framework structure comprising YO2 and X2O3, wherein Y is a tetravalent element and X is a trivalent element, wherein the zeolitic material comprises one or more alkaline earth metals selected from the group consisting of Mg, Ca, Sr, Ba, and combinations of two or more thereof, and wherein the framework of the zeolitic material comprised in the catalyst contains substantially no phosphorous, as well as to a process for the preparation of a catalyst comprising one or more alkaline earth metals selected from the group consisting of Mg, Ca, Sr, Ba, and combinations of two or more thereof and to a catalyst obtainable therefrom. Furthermore, the present invention relates to a method for the conversion of oxygenates to olefins employing the inventive catalyst, as well as to the use of the inventive catalyst in specific applications.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: December 20, 2022
    Assignee: BASF SE
    Inventors: Robert McGuire, Christiane Janke, Ulrich Mueller, Ekkehard Schwab
  • Patent number: 11529616
    Abstract: The invention relates to a catalyst system and process for preparing dimethyl ether from synthesis gas as well as the use of the catalyst system in this process.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: December 20, 2022
    Assignee: BASF SE
    Inventors: Sabine Schuster, Ekkehard Schwab, Stefan Altwasser, Harry Kaiser, Stephan A. Schunk, Manuela Gaab
  • Patent number: 11529614
    Abstract: Embodiments of the present disclosure are directed to a coated hydroprocessing catalyst comprising: a hydroprocessing catalyst comprising a porous support and at least one metal supported on the porous support; wherein the porous support comprising silica, alumina, titania, or combinations thereof; and the at least one metal selected from IUPAC Groups 6, 9 and 10 metals; a catalyst activation agent, a catalyst deactivation agent, or both loaded onto pores of the porous support, the catalyst activation agent comprising at least one sulfur compound and the catalyst deactivation agent comprising at least one nitrogen compound; and a coating layer on a surface of the hydroprocessing catalyst, the coating layer encapsulating the catalyst activation agent, the catalyst deactivation agent, or both within the hydroprocessing catalyst, wherein the coating layer comprises a polymer, or a paraffinic oil.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: December 20, 2022
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 11529625
    Abstract: Embodiments of the present disclosure are directed to a method of producing an encapsulated hydroprocessing catalyst comprising: preparing a hydroprocessing catalyst comprising a porous support and at least one metal supported on the porous support, the porous support comprising alumina, silica, titania, or combinations thereof, and the at least one metal selected from IUPAC Groups 6, 9 and 10 metals; applying a catalyst activation precursor comprising a sulfur containing compound, a catalyst deactivation precursor comprising a nitrogen containing compound, or both onto pores of the hydroprocessing catalyst to form a loaded hydroprocessing catalyst; and coating the loaded hydroprocessing catalyst with a coating material to produce the encapsulated hydroprocessing catalyst, wherein the coating material comprises a polymer or a paraffinic oil.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: December 20, 2022
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 11529619
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 20, 2022
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 11524281
    Abstract: A phosphorus-containing molecular sieve has a phosphorus content of about 0.3-5 wt %, a pore volume of about 0.2-0.95 ml/g, and a ratio of B acid content to L acid content of about 2-10. The molecular sieve has a specific combination of characteristics, including a high ratio of B acid content to L acid content, thereby exhibiting higher hydrocracking activity and ring-opening selectivity when used in the preparation of a hydrocracking catalyst.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: December 13, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Yichao Mao, Mingfeng Li, Xiangyun Long, Runqiang Zhang, Yang Zhao
  • Patent number: 11518684
    Abstract: A NaY molecular sieve with an aluminum-rich surface is prepared using a process that includes the steps of: a. mixing a directing agent and a first silicon source to obtain a first mixture, wherein the directing agent has a molar composition of Na2O:Al2O3:SiO2:H2O=(6-25):1:(6-25):(200-400); b. mixing the first mixture obtained in the step a with a second silicon source, an aluminum source and water to obtain a second mixture; c. carrying out hydrothermal crystallization on the second mixture obtained in the step b, and collecting a solid product. Calculated as SiO2, the weight ratio of the first silicon source to the second silicon source is 1:(0.01-12). The NaY molecular sieve has larger aluminum distribution gradient from the surface to the center of the particle than the conventional molecular sieve.
    Type: Grant
    Filed: May 27, 2019
    Date of Patent: December 6, 2022
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Qiang Fu, Yongxiang Li, Chengxi Zhang, Hexin Hu, Xuhong Mu, Xingtian Shu
  • Patent number: 11517885
    Abstract: The present invention relates to a catalyst for producing olefins from dehydrogenation of alkane having 2 to 5 carbon atoms and a method for producing olefins using said catalyst, wherein said catalyst comprises a hierarchical zeolite nanosheet having a silica to alumina (SiO2/AI2O3) ratio more than 120 and group X metal(s) in a range of 0.3 to 5% by weight. The catalyst according to the conversion of precursor to yields and high olefins selectivity.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: December 6, 2022
    Assignee: PTT Global Chemical Public Company Limited
    Inventors: Chularat Wattanakit, Thittaya Yutthalekha, Anawat Thivasasith, Wannaruedee Wannapakdee, Pannida Dugkhuntod, Duangkamon Suttipat
  • Patent number: 11517023
    Abstract: A method of removing one or more antibiotics from a dairy product, the method involve passing the dairy product comprising an antibiotic in a first amount through a bulk comprising, relative to a total bulk weight, at least 75 wt. % of titanium oxide nanostructures, to provide the dairy product comprising the antibiotic in a second, lesser amount, wherein the nanostructures have lengths at least two-fold in excess of their width and height. Bulk materials useful in this or related methods or applications may have loosely tangled, noodle-like morphologies on sub-100 nm scale, and need not employ graphene and/or polymeric support networks in columns, generally having only titanium oxides without silicon or iron oxides.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: December 6, 2022
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Hafedh Kochkar, Nuhad Abdullah Alomair, Reem Khalid Alibilali, Suhailah Saud Aljameel
  • Patent number: 11498062
    Abstract: Methods and phosphorus-containing solid catalysts for catalyzing dehydration of cyclic ethers (e.g., furans, such as 2,5-dimethylfuran) and alcohols (e.g., ethanol and isopropanol). The alcohols and cyclic ethers may be derived from biomass. One example includes a tandem Diels-Alder cycloaddition and dehydration of biomass-derived 2,5-dimethyl-furan and ethylene to renewable p-xylene. The phosphorus-containing solid catalysts are also active and selective for dehydration of alcohols to alkenes.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 15, 2022
    Assignees: Regents of the University of Minnesota, University of Massachusetts Amherst, University of Delaware
    Inventors: Hong Je Cho, Wei Fan, Michael Tsapatsis, Paul J. Dauenhauer, Limin Ren, Raul Lobo