Patents Examined by Eric F. Winakur
  • Patent number: 11672448
    Abstract: A probe tip of an oximeter device includes first and second printed circuit boards (PCBs) that are coupled to the ends of optical fibers that transmit light between the PCBs and into patient tissue that is to be measured by the oximeter device. The PCBs are oriented at an angle between zero and ninety degrees so that the fibers have a curved shape between the locations at which the fibers are coupled to the first and second PCBs. The angular orientation of the PCBs and curved shape of the fibers allows the fibers to have a longer length than if the fibers were straight and allows for light transmitted through the fibers to have a uniform distribution across a cross-section of the fibers as the light is emitted from the fibers into patient tissue. The uniform distribution of light transmitted into patient tissue allows for reliable oximetry measurements.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: June 13, 2023
    Assignee: ViOptix, Inc.
    Inventors: Kate LeeAnn Bechtel, Alex Michael Margiott, Jennifer Elizabeth Keating, Kimberly Merritt Shultz
  • Patent number: 11666227
    Abstract: This disclosure relates to selection of optimum channel in twin radars for efficient detection of cardiopulmonary signal rates. State-of-the-art solutions involve use of IQ (In-phase and Quadrature) channel radar which need continuous calibration. Distance of the radar from a subject being monitored affects performance. The present disclosure enables enhanced cardiopulmonary signal rate monitoring using a time domain approach, wherein only the data from signal reflected off the radar is considered. The solution is also time window adaptive. Signal property and radar physics-based methods have been implemented for selecting an optimum channel in twin radars thereby enhancing detection of respiration rate and breath rate.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: June 6, 2023
    Assignee: Tata Consultancy Services Limited
    Inventors: Anwesha Khasnobish, Raj Rakshit, Smriti Rani, Andrew Gigie, Tapas Chakravarty
  • Patent number: 11666275
    Abstract: An electronic device is provided. The electronic device includes a housing including a first surface facing a first direction, a second surface facing a second direction opposite to the first surface, and a third surface connecting the first surface and the second surface to form a space in the housing, a display viewable in the first direction through the first surface of the housing, a printed circuit board (PCB) disposed in the space, a glass covering at least a part of the second surface of the housing and including a fourth surface facing the first direction and a fifth surface facing the second direction, a high-hardness member disposed on the fifth surface, a first conductive member disposed between the high-hardness member and the glass, and a second conductive member disposed on the fourth surface and electrically connected to the PCB.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: June 6, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Injo Jeong, Seongwook Jo, Hyunguk Yoo, Younghyun Kim, Suho Lee, Jeahyuck Lee, Jeehoon Lee, Hyunjun Jung, Shinhee Cho
  • Patent number: 11666256
    Abstract: A pulse oximeter sensor with earhook assembly for placement along the outside of a person's ear supported by the ear flap and ear lobe into which is placed a sensors for receiving and transmitting human body's analytics such as pulse or blood oxygen saturation.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: June 6, 2023
    Inventor: Michael Edward Labrecque
  • Patent number: 11660027
    Abstract: This document describes techniques and devices for Fourier-transform infrared (FT-IR) spectroscopy using a mobile device. A mobile device (502) includes a light source (504) that emits light toward an interferometer (508) that uses mirrors to separate and recombine the light. The interferometer directs the recombined light toward a person. Light reflected from, or transmitted through, the person is received through a reception port (506) to a photodetector (510) that outputs photodetector data that corresponds to a measured light intensity of the reflected and transmitted light as a function of a path length of the light or a mirror position of the interferometer. Based on the photodetector data, an interferogram is generated. Applying a technique such as a Fourier transform to the interferogram, a spectrum data set of the reflected and transmitted light is generated. Based on the spectrum data set, a concentration of solutes in the person's blood is calculated.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: May 30, 2023
    Assignee: Google LLC
    Inventors: Christopher David Workman, Ricky Bomber, Kelly Dobson
  • Patent number: 11653846
    Abstract: A device comprising a piece of planar substrate embedded with two sensors and two emitters. The substrate has a generally planar surface for application onto the wearer's body part. The emitters and sensors are shown to be arranged in such a way that no subset of any two emitters and one sensor, or subset of any two emitters and one sensor, forms a straight line, which prevents the two sensors from detecting the same noise caused by the same wearer movements.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: May 23, 2023
    Assignee: WELL BEING DIGITAL LIMITED
    Inventors: Ming Yip Wallace Wong, Chor Tin Ma
  • Patent number: 11653883
    Abstract: Systems and methods for acquiring photoplethysmographic (PPG) signals for measuring blood pressure can include a computing device acquiring a sequence of images representing transdermal optical data of a subject, and generating a corresponding sequence of downsampled color frames. The computing device can identify, in each downsampled color frame, a respective central image block representing a central image region of the downsampled color frame and having a first size smaller than a second size of the downsampled color frame. The computing device can generate, for each downsampled color frame, a corresponding color intensity value based on the respective central image block. The computing device can generate, using color intensity values corresponding to the sequence of downsampled color frames, a PPG signal to determine a blood pressure value of the subject.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: May 23, 2023
    Assignee: BIOSPECTAL SA
    Inventors: Eliott Jones, Jean-Francois Knebel, Urvan Christen, Frederic Frappereau, Patrick Schoettker
  • Patent number: 11647950
    Abstract: An in-ear hearing device includes a light source configured to emit light, a photodetector configured to detect the emitted light after the emitted light passes through tissue of a subject, a spout; an audio receiver configured to deliver a sound to the subject through the spout, and a dome configured to conform to a shape of a subject's ear canal when the hearing device is in the ear canal. An output of the light source and an input of the photodetector are separated by the dome, and the dome absorbs and/or reflects at least part of the emitted light. The photodetector may be a forward biased photodiode. The sensor device can be realized with power levels, circuitry components, and in package sizes, of hearing devices.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: May 16, 2023
    Assignee: SONOVA AG
    Inventors: Hans-Ueli Roeck, Christian Frei-Krumme, Konstantin Silberzahn, Markus Muller, Markus Leuthold
  • Patent number: 11647923
    Abstract: A tissue profile wellness monitor measures a physiological parameter, generates a tissue profile, defines limits and indicates when the tissue profile exceeds the defined limits. The physiological parameter is responsive to multiple wavelengths of optical radiation after attenuation by constituents of pulsatile blood flowing within a tissue site. The tissue profile is responsive to the physiological parameter. The limits are defined for at least a portion of the tissue profile.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: May 16, 2023
    Assignee: Masimo Corporation
    Inventor: Marcelo M. Lamego
  • Patent number: 11647924
    Abstract: Apparatus and methods provide wireless, disposable, continuous pulse oximeter sensor technology, useful and beneficial for a number of applications including relatively extended periods of data collection, and/or packaged in compact and easy-to-use assemblies. Economic fabrication and use provides flexible methodologies that can reduce the overall costs of monitoring and collecting patient's physiological data, and provide relatively greater ease and comfort to the patient. A disposable wireless continuous pulse oximeter sensor has a reduced emitter-detector separation, a low-power frontend, and a low-cost processor that sends waveforms to a host device so that the host can calculate and display the parameters of interest. Complications created by the reduced distance between emitter and detector are minimized by using an emitter-detector assembly with an optically dark background, and a bandage for improved optical compliance.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: May 16, 2023
    Assignee: True Wearables, Inc.
    Inventors: Marcelo Malini Lamego, Tatiana Buticosky Lamego
  • Patent number: 11647959
    Abstract: An ingestible electronic capsule for the collection of samples along a gastric intestinal tract and methods relating thereto are provided. The ingestible electronic capsule includes a housing and a cap that form an interior chamber. The cap includes a sampling port and one or more sample collection chambers are disposed within the interior chamber. A motor is also disposed within the interior chamber and is configured to rotate one of the cap and the one or more sample collection chambers so to align one or the one or more sample collection chambers and the sampling port of the cap so to allow for sample collection. A microcontroller is also disposed within the interior chamber and is in communication with at least the motor. The microcontroller is configured to control the selective alignment of the sampling port and one of the one or more sample collection chambers and induce gastric intestinal fluid sampling.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: May 16, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Duxin Sun, Yogesh B. Gianchandani, Tao Li, Jinhui Liao, Qisen Cheng, Johnathan Lewis, Ryan Meredith, Jeremy Felton
  • Patent number: 11642051
    Abstract: The invention comprises a method and apparatus for sampling a common tissue volume and/or a common skin layer skin of a person as a part of noninvasive analyte property determination system, comprising the steps of: providing an analyzer, comprising at least three detectors at least partially embedded in a probe housing, the probe housing comprising a sample side surface, the detectors including a first and second range of detection zones of differing radial distances from a first illumination zone and second illumination zone, respectively coupled to separate sources; repetitively illuminating the illumination zones of the skin with photons in a range of 1200 to 2500 nm; and detecting portions of light from the sources with the at least three detectors, the detectors positioned on a common line with the sources.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: May 9, 2023
    Inventors: Benjamin Mbouombouo, Alan Abul-Haj, Roxanne Abul-Haj, Christopher Slawinski, Alodeep Sanyal, Kevin Hazen
  • Patent number: 11644674
    Abstract: One embodiment is directed to a system comprising a head-mounted member removably coupleable to the user's head; one or more electromagnetic radiation emitters coupled to the head-mounted member and configured to emit light with at least two different wavelengths toward at least one of the eyes of the user; one or more electromagnetic radiation detectors coupled to the head-mounted member and configured to receive light reflected after encountering at least one blood vessel of the eye; and a controller operatively coupled to the one or more electromagnetic radiation emitters and detectors and configured to cause the one or more electromagnetic radiation emitters to emit pulses of light while also causing the one or more electromagnetic radiation detectors to detect levels of light absorption related to the emitted pulses of light, and to produce an output that is proportional to an oxygen saturation level in the blood vessel.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: May 9, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Nicole Elizabeth Samec, Adrian Kaehler
  • Patent number: 11642084
    Abstract: An apparatus includes a magnetic-field transducer, and circuitry. The magnetic-field transducer is configured to be coupled externally to a body of a patient. The circuitry is configured to generate and apply to the magnetic-field transducer a time-varying signal, so as to generate a time-varying magnetic field outside the body of the patient, for supplying electrical energy by inductive coupling to an electronic device that is positioned inside the body, to estimate an intensity of the magnetic field that reaches the electronic device, and to assess fluid retention in an organ of the patient based on the estimated intensity of the magnetic field.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: May 9, 2023
    Assignee: VECTORIOUS MEDICAL TECHNOLOGIES LTD.
    Inventors: Oren Goldshtein, Matan Hershko
  • Patent number: 11642050
    Abstract: An apparatus for estimating a glucose exposure may include: a spectrometer configured to measure a plurality of Raman spectra from an object; and a processor configured to extract depth-specific protein information from the plurality of Raman spectra and estimate the glucose exposure of the object based on the depth-specific protein information.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: May 9, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin Young Park, Un Jeong Kim, Yun S Park, Sung Mo Ahn
  • Patent number: 11639894
    Abstract: A method and apparatus for analyzing a substance is disclosed. An optical medium is arranged on a substance surface with at least one region of the optical medium surface in contact with the substance surface. An excitation light beam is emitted through the contacting region of the medium surface (to the substance surface. A measurement light beam is emitted through the optical medium to the contacting region of the medium surface such that the measurement light beam and the excitation light beam overlap on the interface of the optical medium and of the substance surface, on which the measurement light beam is reflected. A deflection of the reflected measurement light beam is detected in dependence on the wavelength of the excitation light beam. The substance is then analyzed based on the detected deflection of the measurement light beam in dependence on the wavelength of the excitation light beam.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: May 2, 2023
    Assignee: DiaMonTech AG
    Inventors: Werner Mäntele, Miguel Angel Pleitez Rafael, Tobias Lieblein, Otto Hertzberg, Alexander Bauer, Hermann Von Lilienfeld-Toal, Arne Küderle, Tabea Pfuhl
  • Patent number: 11638529
    Abstract: The present invention relates in particular to the field of anesthesia and to a method for real-time evaluation of the mean arterial pressure of a patient from plethysmography measurements. It also relates to a method for treating a patient comprising by continuously evaluating the mean arterial pressure of the patient, based on values continuously calculated by plethysmography.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 2, 2023
    Assignee: ASSISTANCE PUBLIQUE—HOPITAUX DE PARIS
    Inventors: Fabrice Vallée, Jona Joachim, Maxime Coutrot, Joaquim Mateo, Étienne Gayat, Alexandre Mebazaa
  • Patent number: 11633130
    Abstract: The invention comprises a method and apparatus for noninvasively determining state of a person, comprising the steps of: providing an analyzer comprising a first and second spectrometer unit and a main controller subsystem; replaceably attaching the first spectrometer unit to the person at a first illumination zone; the first spectrometer unit delivering first photons, from first illumination optics, along a first mean z-axis optical path normal to a first x/y-plane tangentially contacting the first illumination zone of the person; replaceably attaching a second spectrometer unit to the person at a second illumination zone; the second spectrometer delivering second photons, from second illumination optics, along a second mean z-axis optical path perpendicular to a second x/y-plane tangentially contacting the second illumination zone of the skin, the first x/y-plane noncoplanar with the second x/y-plane; and the main controller processing detected signals to generate at least one measure of state of the person
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: April 25, 2023
    Inventors: Alodeep Sanyal, Benjamin Mbouombouo, Roxanne Abul-Haj, Alan Abul-Haj, Christopher Slawinski, Kevin Hazen
  • Patent number: 11633153
    Abstract: Embodiments of apparatuses and methods for determining an emplacement of sensors in a wound dressing are disclosed. In some embodiments, a wound dressing includes a plurality of sensors configured to measure wound or patient characteristics. One or more processors are configured to receive wound or patient characteristics data as well as emplacement data. The received data can be used to determine an emplacement of the plurality of sensors, the wound dressing, or a wound. The sensors can include a set of nanosensors. The wound dressing can include pH sensitive ink which can be utilized for determining a placement of the wound dressing and determining a pH associated with the wound. The wound dressing can be used in a negative pressure wound therapy system.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: April 25, 2023
    Assignee: Smith & Nephew PLC
    Inventors: Varuni Rachindra Brownhill, Victoria Jody Hammond, Allan Kenneth Frazer Grugeon Hunt, Marcus Damian Phillips, Damian Smith, Charlotte Urwin
  • Patent number: 11633116
    Abstract: Systems and methods for interference and motion detection from dark periods are provided, including analysis of a physiological signal to determine a physiological parameter of a subject, using a photoplethysmography system to monitor signals during an LED-off period to identify interference or motion artifacts in the signal.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: April 25, 2023
    Assignee: COVIDIEN LP
    Inventors: Christopher Meehan, Robert Eikel, Daniel Lisogurski, Eric Morland