Patents Examined by Ethan C. Whisenant
  • Patent number: 10266879
    Abstract: This invention provides compositions, methods, and systems for characterizing, resolving, and quantitating single stranded and double stranded DNA and RNA in-situ. Paired sense and anti-sense probes can signal the presence of double stranded nucleic acids. DNA and RNA can be distinguished in cell and tissue samples by hybridizing with probe sets adapted to highlight differences in these targets in-situ.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: April 23, 2019
    Inventors: Quan Nguyen, Yunqing Ma, Audrey Lin, Shauna Levinson, Chunfai Lai
  • Patent number: 10253321
    Abstract: Methods and kits for joining three or more polynucleotides to form a product polynucleotide are provided. Such a method includes forming a reaction mixture comprising (i) a vector fragment whose ends have four base overhangs resulting from cleavage of a vector with a first type IIs enzyme, (ii) a first insert nucleic acid with a four base overhang at one end resulting from cleavage by the first type IIs enzyme and a three base overhang at the other end resulting from cleavage by the second type IIs enzyme; and (iii) a second insert nucleic acid with a four base overhang at one end resulting from cleavage by the first type IIs enzyme and a three base overhang at the other end resulting from cleavage by the second type IIs enzyme, and (iv) a ligase.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: April 9, 2019
    Assignee: DNA2.0, INC.
    Inventors: Jeremy Minshull, Jon Ness
  • Patent number: 10227640
    Abstract: A method of screening for at least one biological entity of interest using a microfabricated device which has a top surface defining an array of microwells. A sample is loaded onto the microfabricated device such that at least one microwell of the array of microwells includes at least one cell and an amount of a nutrient. A membrane is applied to the microfabricated device to retain the at least one cell and the nutrient. Without furnishing additional nutrient to the microwells, the microfabricated device is incubated to grow a plurality of cells from the at least one cell in the at least one microwell of the array of microwells. The plurality of cells is then analyzed to determine a presence or absence of a biological entity of interest.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: March 12, 2019
    Assignee: GENERAL AUTOMATION LAB TECHNOLOGIES, INC.
    Inventors: Paul C. Blainey, Michael W. Seely, Roman Stocker, Karsten Zengler, Scott Conradson, Peter Christey, Alexander Hallock
  • Patent number: 10227584
    Abstract: This disclosure relates to analyzing the end-to-end sequence and the relative distributions in heterogeneous mixtures of polynucleotides and methods and enabling reagents related thereto. In certain embodiments this method relates to the complete full length sequencing and quantitative profiling of mRNAs present in the transcriptomes of cells or tissues of but not limited to, higher multicellular organisms that possess interrupted genes subject to complex post-transcriptional RNA processing.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: March 12, 2019
    Assignees: Emory University, The Johns Hopkins University
    Inventors: Mark C. Emerick, William S. Agnew
  • Patent number: 10227637
    Abstract: Provided are a PNA probe for detecting nucleotide polymorphism of a target gene, a melting curve analysis method for detecting the nucleotide polymorphism of the target gene using the same, a nucleotide polymorphism analysis method of a target gene including the melting curve analysis method, and a kit for detecting the nucleotide polymorphism of the target gene containing the PNA probe. It is characterized that the PNA probe according to the present invention contains negative charge molecules. The modified PNA probe according to the present invention contains the negative charge molecules to have a high recognition ability with respect to a target DNA and a high coupling ability to the target DNA and to be rapidly dissociated by heat, such that the nucleotide polymorphism analysis may be relatively easily performed even in a heterozygous sample showing two melting curve graphs, and two or more adjacent single nucleotide polymorphisms may be simultaneously analyzed.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 12, 2019
    Assignee: PANAGENE INC.
    Inventors: Goon Ho Joe, Sung-Kee Kim, Heekyung Park, Chwang Siek Park, Se Ryun Kim, Yongtae Kim, Su Nam Kim
  • Patent number: 10214739
    Abstract: The subject innovation relates to a RNA binding buffer comprising (a) at least one chaotropic agent; and (b) an organic solvent selected from the group consisting of ethylene carbonate, ethylene glycol diacetate and 2-pyrrolidone or combinations thereof. The subject innovation further relates to a method of binding RNA to a solid support and to a method of isolating RNA both making use of the binding buffer of the subject innovation. The subject innovation finally relates to a kit comprising the RNA binding buffer or the organic solvent as relevant substance therein.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: February 26, 2019
    Assignee: AXAGARIUS GMBH & CO. KG
    Inventor: Christoph Kirsch
  • Patent number: 10202638
    Abstract: The invention provides methods and compositions for separately denaturing a probe and target in hybridization applications. The invention may, for example, eliminate the use of or reduce the dependence on formamide in hybridization applications. Compositions for use in the invention include an aqueous composition comprising at least one polar aprotic solvent in an amount effective to denature double-stranded nucleotide sequences.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: February 12, 2019
    Assignee: DAKO DENMARK A/S
    Inventor: Steen Hauge Matthiesen
  • Patent number: 10203334
    Abstract: Small molecule fluorescent probes for established drug targets such as nucleic acids including DNA and RNA has been developed and disclosed herein. These nucleic acid probes bind to multiple DNA and RNA structures, and to sites crucial for nucleic acid function, such as DNA and RNA major grooves. Displacement of the probes by other binders such as small molecule compounds and/or proteins illicits a fluorescence change in the probe that once detected and analyzed provide binding information of these other binders of interest. Similarly, changes in fluorescence upon binding of the probes to nucleic acid have been applied to screen nucleic acid of different sequence and conformation. The nucleic acid probes and method of uses disclosed herein are advantageously suitable for high-through put screening of libraries of small molecule compounds, proteins, and nucleic acids.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 12, 2019
    Assignee: Nubad, LLC
    Inventors: Dev P. Arya, Frank Anderson Norris, Jason Derrick Watkins
  • Patent number: 10203335
    Abstract: Provided are methods for labeling transfer RNA comprising replacing the uracil component of a dihydrouridine of said transfer RNA with a fluorophore. The disclosed methods may comprise fluorescent labeling of natural tRNAs (i.e., tRNAs that have been synthesized in a cell, for example, in a bacterium, a yeast cell, or a vertebrate cell) at dihydrouridine (D) positions, or fluorescent labeling of synthetic tRNAs. In another aspect, the present invention provides methods for assessing protein synthesis in a translation system comprise providing a tRNA having a fluorophore substitution for the uracil component of a dihydrouridine in a D loop of the tRNA; introducing the labeled tRNA into the translation system; irradiating the translation system with electromagnetic radiation, thereby generating a fluorescence signal from the fluorophore; detecting the fluorescence signal; and, correlating the fluorescence signal to one or more characteristics of the protein synthesis in the translation system.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 12, 2019
    Assignees: The Trustees of the University of Pennsylvania, Anima Cell Metrology
    Inventors: Barry S. Cooperman, Zeev Smilansky, Yale E. Goldman, Dongli Pan
  • Patent number: 10167509
    Abstract: Provided herein are improved methods, compositions, and kits for analysis of nucleic acids. The improved methods, compositions, and kits can enable copy number estimation of a nucleic acid in a sample. Also provided herein are methods, compositions, and kits for determining the linkage of two or more copies of a target nucleic acid in a sample (e.g. whether the two or more copies are on the same chromosome or different chromosomes) or for phasing alleles.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: January 1, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: John F. Regan, Serge Saxonov, Michael Y. Lucero, Benjamin J. Hindson, Phillip Belgrader, Simant Dube, Austin P. So, Jeffrey C. Mellen, Nicholas J. Heredia, Kevin D. Ness, Billy W. Colston, Jr.
  • Patent number: 10160996
    Abstract: The present invention provides a novel method that can analyze a target easily utilizing binding nucleic acid molecules and an analysis kit for use in the method. The analysis method of the present invention includes: a complex formation step of causing a binding nucleic acid molecule that binds to the target and a sample to come into contact with each other to form a complex of the binding nucleic acid molecule and the target in the sample; a nuclease treatment step of releasing a nucleic acid monomer from at least one of a complex fraction and a non-complex fraction by a nuclease treatment; an enzyme treatment step of reacting the released nucleic acid monomer with an enzyme for which the nucleic acid monomer is a substrate; a detection step of detecting the enzyme reaction; and an analysis step of analyzing the target that has formed the complex from the result of detecting the enzyme reaction.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: December 25, 2018
    Assignee: NEC Solution Innovators, Ltd.
    Inventors: Yoshihito Yoshida, Katsunori Horii, Iwao Waga
  • Patent number: 10155785
    Abstract: The present invention provides, among other things, methods of purifying messenger RNA (mRNA) including the steps of (a) precipitating mRNA from an impure preparation; (b) subjecting the impure preparation comprising precipitated mRNA to a purification process involving membrane filtration such that the precipitated mRNA is captured by a membrane; and (c) eluting the captured precipitated mRNA from the membrane by re-solubilizing the mRNA, thereby resulting in a purified mRNA solution. In some embodiments, a purification process involving membrane filtration suitable for the present invention is tangential flow filtration.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: December 18, 2018
    Assignee: Translate Bio, Inc.
    Inventors: Frank DeRosa, Anusha Dias, Shrirang Karve, Michael Heartlein
  • Patent number: 10150963
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: December 11, 2018
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Serge Saxonov, Kevin Ness, Paul Hardenbol, Christopher Hindson, Donald Masquelier, Mirna Jarosz, Michael Schnall-Levin
  • Patent number: 10150964
    Abstract: The present disclosure provides compositions, methods, systems, and devices for polynucleotide processing. Such polynucleotide processing may be useful for a variety of applications, including polynucleotide sequencing.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: December 11, 2018
    Assignee: 10X GENOMICS, INC.
    Inventors: Benjamin Hindson, Serge Saxonov, Kevin Ness, Paul Hardenbol, Christopher Hindson, Donald Masquelier, Mirna Jarosz, Michael Schnall-Levin
  • Patent number: 10150987
    Abstract: The present invention provides labeled circular plasmid DNA molecules for studying DNA topology and topoisomerases. The molecules of the present invention also provide tools for high throughput drug screening for inhibitors of DNA gyrases and DNA topoisomerases for anticancer drug discovery and antibiotics discovery.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 11, 2018
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventor: Fenfei Leng
  • Patent number: 10144958
    Abstract: A method of determining whether a given single nucleotide is methylated or not methylated characterized by the steps of (a) contacting the single nucleotide with one or more hybridization probe types each of which in its unused form; (b) for the relevant probe type causing (i) the single nucleotide to bind to the region resistant to exonucleolytic degradation and the single-stranded region and (ii) the second oligonucleotide to bind to the single nucleotide and the single-stranded nucleotide region; (c) treating the used probe with a methylation-dependent restriction or a methylation-sensitive restriction endonuclease to cleave adjacent the region resistant to exonucleolytic degradation; and thereafter (d) treating the product of step (c) with an exonuclease or a polymerase exhibiting exonuclease activity to liberate either only first or both first and second detectable elements in a detectable state to determine if the single nucleotide is methylated or not.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: December 4, 2018
    Assignee: BASE4 INNOVATION LTD.
    Inventors: Barnaby Balmforth, Ana Luisa Bras dos Santos Ribeiro da Silva-Weatherley
  • Patent number: 10138475
    Abstract: The present invention concerns the use of methods and compositions for the isolation of small RNA molecules (100 nucleotides or fewer), such as microRNA and siRNA molecules. Such molecules are routinely lost in commonly used isolation procedures and therefore the present invention allows for a much higher level of enrichment or isolation of these small RNA molecules.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 27, 2018
    Assignee: APPLIED BIOSYSTEMS, LLC
    Inventor: Richard Conrad
  • Patent number: 10138480
    Abstract: The present invention provides a novel technique by which the redox activity of a nucleic acid molecule can be evaluated. An evaluation method of the present invention includes: a detection step of electrochemically detecting a redox reaction to a substrate, the redox reaction being catalyzed by a nucleic acid molecule to be evaluated, using a device that electrochemically detects a redox reaction; and an evaluation step of evaluating redox activity of the nucleic acid molecule from a result of the detection of the redox reaction. As the device, a device in which a base provided with a detection portion is included, the detection portion includes an electrode system, and the nucleic acid molecule to be evaluated is arranged on the base is used. In the present invention, it is preferred that a plurality of kinds of nucleic acid molecule to be evaluated is arranged on the base, and the plurality of kinds of nucleic acid molecules to be evaluated is evaluated by a single device.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: November 27, 2018
    Assignee: NEC SOLUTION INNOVATORS, LTD.
    Inventors: Naoto Kaneko, Katsunori Horii, Jou Akitomi, Shintarou Katou, Iwao Waga
  • Patent number: 10100349
    Abstract: Methods and compositions for determining the presence of a polymorphism at a target nucleotide position in a plurality of target nucleic acid sequences is provided.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: October 16, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Iain J. Macleod, Christopher F. Rowley, Max Essex
  • Patent number: 10081834
    Abstract: The present invention is directed to sequencing of nucleic acids. A method is provided for sequencing based on immobilized nucleic acid on a surface. Advantageously, a long range detection mechanism is used for detecting, whether a nucleotide provided to the substrate of a biochip has been incorporated into the immobilized template nucleic acid. Various different alignment means are provided by the present invention which can be used for facilitating a rigidly locking of the orientation of the DNA complex, which complex comprises the template nucleic acid, the primer and the capture nucleic acid. Various different linker systems may be used to immobilize the DNA complex at a first and a second strand end, such that the desired alignment of the DNA complex is achieved. Also co-adsorbed molecules on the substrate surface can be used for such an aligning measure.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: September 25, 2018
    Assignee: DYNAMIC BIOSENSORS GMBH
    Inventors: Andreas Langer, Ralf Strasser, Ulrich Rant