Patents Examined by Eugene T Wu
  • Patent number: 10682509
    Abstract: The present invention relates to a device for providing neuromuscular stimulation. The device comprises a positive electrode, a plurality of negative electrodes, a non-conductive substrate and a control unit for activating the electrodes. The control unit of the device activates the negative electrodes in a predetermined sequence, so as to deliver electrical stimulus to a user, wherein the predetermined sequence is repeated with an increasing level of stimulus until a predetermined outcome is achieved. Additionally each negative electrode of the devices comprises at least one conductive track mounted on the non-conductive substrate wherein at least one pair of negative electrodes overlap such that the conductive track or tracks of a first negative electrode of the pair overlap with the electrode footprint, but not the conductive tracks, of a second negative electrode of the pair.
    Type: Grant
    Filed: June 24, 2016
    Date of Patent: June 16, 2020
    Assignee: Sky Medical Technology Ltd
    Inventors: Jonathan Fenton, Duncan Bain, Martin Gordon, Benjamin Gordon
  • Patent number: 10675472
    Abstract: Systems and methods for evaluating electrostimulation of a heart are disclosed. A system can comprise an electrostimulation circuit that can deliver multi-site electrostimulation, including pacing at two or more sites of the heart during the same cardiac cycle. The system can comprise a heart sound sensor circuit configured to sense a heart sound (HS) signal during multi-site stimulation. The heart sound sensor circuit can also sense HS signals in response to uni-site stimulation at a specified site capturing at least a portion of the heart. The system can comprise a pacing analyzer circuit that uses the HS signals during the multi-site stimulation and during the uni-site stimulation to determine a capture status indication that indicates whether the multi-site stimulation captures the two or more sites of the heart, and can be one of a full capture indication, a partial capture indication, or a loss of capture indication.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: June 9, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Yinghong Yu
  • Patent number: 10639477
    Abstract: An example of a system may include an electrode and a pulse generation system. The electrode may be configured to be implanted near a neural target that innervates airways. The pulse generation system may be configured to be operably connected to the electrode to deliver depletion block stimulation through the electrode to alleviate symptoms of pulmonary disease. The pulse generation system and the electrode may be configured to cooperate to capture axons in the neural target. The depletion block stimulation may include a series of pulses at a depletion pulse frequency.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: May 5, 2020
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Manfred Franke, Bryan Allen Clark, Aiden Flanagan, Juan Gabriel Hincapie Ordonez, David J. Ternes
  • Patent number: 10632324
    Abstract: A method for treating skin tissues including irradiating the skin tissues with infrared light between about 16 and about 72 hours prior to photodynamic therapy.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: April 28, 2020
    Assignee: 9127-4910 QUEBEC INC.
    Inventor: Daniel Barolet
  • Patent number: 10617349
    Abstract: A system and method for synchronizing patient medical parameters and dialysis parameters. The system and related method allow for the determination of the effect of dialysis on patient health. The invention also allows for the determination of whether observed patient health effects are due to specific dialysis parameters and for making necessary changes to the dialysis parameters in order to improve patient health.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: April 14, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: John Burnes, VenKatesh Manda, Tico Blumenthal, Orhan Soykan
  • Patent number: 10610695
    Abstract: Described here are devices, systems, and methods for increasing tear production by stimulating the cornea, conjunctiva, and/or subconjunctiva. In some variations, the devices may be in the form of a contact lens. The contact lens may comprise a lens body and a stimulator chip, where the stimulator chip is embedded in the lens body. An external power source wirelessly transmits energy to the stimulator chip, where the stimulator chip may convert the energy to an electric waveform to stimulate the cornea, conjunctiva, and/or subconjunctiva. Stimulation may activate the lacrimal reflex to increase tear production. The devices and systems for increasing tear production may be used in methods of treating dry eye, reducing the symptoms of tired eye, increasing comfort for contact lens wearers, and extending the number of years a contact lens user can wear contacts. Also described are methods of manufacturing a contact lens.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: April 7, 2020
    Assignee: Oculeve, Inc.
    Inventors: James Donald Loudin, Manfred Franke, Daniel N. Hamilton, Anand Doraiswamy, Douglas Michael Ackermann
  • Patent number: 10610164
    Abstract: In some examples, a device includes a memory configured to store a first relationship between a blood pressure and another physiological parameter of a patient, the first relationship being indicative of cerebral autoregulation of the patient. The device also includes processing circuitry configured to receive first and second signals indicative of the blood pressure and the physiological parameter, respectively, of a patient. The processing circuitry is also configured to determine an expected value and an actual value of the physiological parameter at a particular blood pressure value of the first physiological signal. The processing circuitry is configured to determine, based on a difference between the actual value and the expected value, and store, in the memory, a second relationship between the blood pressure and the physiological parameter, the second relationship being indicative of a change in the cerebral autoregulation of the patient from the first relationship.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: April 7, 2020
    Assignee: COVIDIEN LP
    Inventors: Paul S. Addison, Dean Montgomery, Andre Antunes
  • Patent number: 10603494
    Abstract: Selective high-frequency spinal chord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal chord region to address low back pain without creating unwanted sensory and/or motor side affects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: March 31, 2020
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10595775
    Abstract: A device, system and related methods for monitoring a mammal with heart failure, kidney disease or both, to make predictions about the likelihood of a life threatening ventricular arrhythmia. The device, system and related methods can have one or more sensors in electronic communication with a processor, the sensors determining one or more physiological parameters of a patient, and communicating the physiological parameter to the processor, and the processors using an algorithm to determine the probability of a ventricular arrhythmia based on the physiological parameters.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: March 24, 2020
    Assignee: Medtronic, Inc.
    Inventor: Orhan Soykan
  • Patent number: 10576281
    Abstract: A method of fitting a cochlear implant in an ipsilateral ear of a subject, the cochlear implant having an electrode array with one or more electrode contacts, includes applying broad-band white noise stimulus to a contralateral ear in order to mask efferent nerve fibers, applying a single pulse stimulus to the ipsilateral ear and then measuring base-line evoked compound action potential (CAP) signals in the ipsilateral ear for an electrode contact during a refractory period, applying a sequence of separated single pulse stimuli to the contralateral ear and then measuring attenuated CAP signals in the ipsilateral ear for the electrode contact during the refractory period, comparing the measured attenuated CAP signals to the measured base-line CAP signals in order to determine a CAP threshold for the electrode contact and adjusting processing parameters of the cochlear implant based on the CAP threshold.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: March 3, 2020
    Assignee: MED-EL Elektromedizinische Geraete GmbH
    Inventors: Konrad Eugen Schwarz, Angelika Dierker, Martin Franz Goll
  • Patent number: 10568998
    Abstract: A blood pump can include a pump housing, an impeller, and a hub. The pump housing can be configured to move blood from an inlet to an outlet thereof. The impeller can be housed in the pump housing, have a plurality of blades joined by a central ring, and be radially supported at the central ring by a bearing. The hub can transmit torque to the impeller using a radial magnetic coupling.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: February 25, 2020
    Assignee: EVERHEART SYSTEMS INC.
    Inventors: Neil H. Akkerman, Greg S. Aber
  • Patent number: 10561464
    Abstract: A laser treatment apparatus includes a primary handset and an auxiliary handset; the primary handset is connectable to the auxiliary handset; the primary handset has a laser source with a primary heat exchanger, and a main cooling circuit to provide cooling fluid to the primary heat exchanger to cool the laser source; the cooling circuit has a circuit connection for engagement with the auxiliary handset. The circuit connection comprises one or more fluid connectors for connection to an auxiliary cooling circuit within the auxiliary handset and the cooling circuit within the auxiliary handset includes a secondary heat exchanger. An electro-mechanical mechanism within the primary handset switches from a first position so that cooling fluid flows in the main cooling circuit within the primary handset when no auxiliary handset is attached and in a second position diverts flow of the cooling fluid to the heat exchanger in the auxiliary handset when the auxiliary handset is connected to the primary handset.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: February 18, 2020
    Assignee: LUMENIS LTD.
    Inventors: Danny Koifman, Shaul Levy, Igal Igor Koifman, Uri Voitsechov
  • Patent number: 10561844
    Abstract: Diaphragm pacing systems and methods are disclosed for providing respiratory therapy to a patient. The diaphragm pacing systems can provide rapid insertion and deployment of pacing electrodes in critically ill patients who require intubation and invasive Positive Pressure Mechanical Ventilation (PPMV) in order to support the physiological requirements of the human ventilatory system. The systems and methods make best use of the contractile properties of the diaphragm muscle and prevent muscle disuse and muscle atrophy. This can be carried out by engaging the phrenic nerves using patterned functional electrical stimulation. The diaphragm pacing systems can be designed to seamlessly interface with any commercially available positive-pressure ventilatory assistance/support equipment such as is commonly in use in hospital intensive care units (ICU) for treating critically ill patients with breathing insufficiencies, pain, trauma, sepsis or neurological diseases or deficits.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 18, 2020
    Assignee: Lungpacer Medical Inc.
    Inventors: Ramasamy Meyyappan, Joaquin Andres Hoffer, Marcelo Baru, Bernard Coquinco, Rodrigo Andres Sandoval, Jessica Kit-Sum Tang
  • Patent number: 10561850
    Abstract: An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 18, 2020
    Assignee: Medtronic, Inc.
    Inventors: James D. Reinke, James K. Carney, Can Cinbis, David J. Peichel, Joseph Ballis
  • Patent number: 10548768
    Abstract: Provided are systems and methods for correcting a corneal surface irregularity surface in a subject. The system generally comprises a infrared laser, for example, and infrared laser and a laser control unit, a corneal contacting unit, a gel solidifying unit and an electronic device tangibly storing algorithms to operate the units. In the methods, a polymerizable or thermo-reversible gel or polymerized resin is applied to the anterior corneal surface and solidified as a layer over the cornea. A first correcting cut is lasered into the stroma of an applanated cornea, the gel layer is then removed and a second correcting cut is lasered in the stroma of the applanated cornea. The lenticule formed intrastromaly by the first and second correcting cuts is removed such that the cornea has a corrected corneal curvature.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: February 4, 2020
    Assignee: Cretech B.V.
    Inventor: Ioannis Pallikaris
  • Patent number: 10548499
    Abstract: A medical device and method for detecting a ventricular arrhythmia event is disclosed. The medical device includes input circuitry configured to receive an electrocardiogram (ECG) signal and processing circuitry coupled to the input circuitry that is configured to identify fiducial points within the ECG signal. Feature extraction circuitry coupled to the processing circuitry is configured to determine interval variability between the fiducial points. Machine learning circuitry is coupled to the feature extraction circuitry and is configured to detect ventricular arrhythmia based on the interval variability between the fiducial points.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: February 4, 2020
    Assignee: Khalifa University of Science and Technology
    Inventors: Nourhan Yahya Bayasi, Temesghen Tekeste Habte, Hani Hasan Mustafa Saleh, Ahsan Habib Khandoker, Mohammed Ismail Elnaggar
  • Patent number: 10548654
    Abstract: Devices and methods for monitoring the temperature of tissue at various locations in a treatment volume during fluid enhanced ablation therapy are provided. In one embodiment, an ablation device is provided having an elongate body, at least one ablation element, and at least one temperature sensor. The elongate body includes a proximal and distal end, an inner lumen, and at least one outlet port to allow fluid to be delivered to tissue surrounding the elongate body. The at least one ablation element is configured to heat tissue surrounding the at least one ablation element. The at least one temperature sensor can be positioned a distance away from the at least one ablation element and can be effective to output a measured temperature of tissue spaced a distance apart from the at least one ablation element such that the measured temperature indicates whether tissue is being heating to a therapeutic level.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: February 4, 2020
    Assignee: Thermedical, Inc.
    Inventor: Michael G. Curley
  • Patent number: 10546388
    Abstract: One aspect of the invention provides a method for customizing cochlear implant stimulation of a living subject. The cochlear implant includes an electrode array having a plurality of electrodes implanted in a cochlea of the living subject. The method includes determining a position for each of the plurality of electrodes and spiral ganglion nerves that the electrode array stimulates, determining a geometric relationship between neural pathways within the cochlea and the electrode array implanted therein, and using one or more electrodes of the electrode array to stimulate a group of SG neural pathways of the cochlea based on the location of the one or more electrodes and their geometric relationship with the neural pathways.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: January 28, 2020
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Jack H. Noble, Rene H. Gifford, Robert F. Labadie, Benoit M. Dawant
  • Patent number: 10543033
    Abstract: Systems and methods for cryoablation of a tissue. In at least one embodiment of a cryoablation system of the present disclosure, the cryoablation system comprises an expandable stent comprising a proximal end and a distal end, a sidewall defining a lumen extending between the proximal end and the distal end, and a cryoablation chamber at the distal end, the expandable stent configured to permit blood flow therethrough, and a cryoablation device comprising at least one coolant tube at least partially positioned within the cryoablation chamber, wherein the at least one coolant tube is operable to produce a cryogenic environment sufficient to ablate at least a portion of a tissue engaged within the cryoablation chamber.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: January 28, 2020
    Assignee: CVDEVICES, LLC
    Inventors: Ghassan S. Kassab, Jose A. Navia, Sr.
  • Patent number: 10537742
    Abstract: A pacing system, which is particularly suitable for implantable leadless pacemakers, applies passively-balanced voltage-based pacing pulses, and periodically performs capture verification (evoked response detection) by following a pacing pulse with a current-based active balancing pulse, and then measuring any evoked response provoked by the pacing pulse. The active balancing pulse reduces residual charge on the electrodes used for pulsing, and thereby reduces polarization artifacts that could obscure measurement of the evoked response at the electrodes. The amplitude and pulse width of the active balancing current pulse are defined by measurements made in a few preceding pulses. The pacemaker preferably detects indicia of cardiac contractility, and performs capture verification only when contractility indicates that the patient is physically inactive and emotionally stable.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: January 21, 2020
    Assignee: BIOTRONIK SE & Co. KG
    Inventors: Marcelo Baru, Ramprasad Vijayagopal, Alan Fryer