Patents Examined by F. L. Evans
  • Patent number: 7679039
    Abstract: The invention provides an apparatus and method for determining the position of a radiation beam. The apparatus includes (a) a first reflective surface and a second reflective surface, the reflective surfaces being placed to form the reflective exterior of a wedge; (b) a first detector placed to detect radiation reflected from the first reflective surface, and (c) a second detector placed to detect radiation reflected from the second reflective surface. The method includes the steps of (a) directing a radiation beam to the reflective exterior of a wedge formed by a first reflective surface and a second reflective surface; (b) selectively detecting radiation reflected from the first reflective surface; (c) selectively detecting radiation reflected from the second reflective surface; and (d) determining the position of the radiation beam based on the difference in the amount of radiation detected from each surface.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: March 16, 2010
    Assignee: The Institute for Systems Biology
    Inventors: Gerrit J. van den Engh, Peter I. Nelson
  • Patent number: 7679749
    Abstract: An optical waveguide SPR sensor is adapted for differential measurement. The optical waveguide SPR sensor includes a base, a bottom layer, and at least one set of optical waveguide layers. The set of the optical waveguide layers includes a measuring optical waveguide channel and a reference optical waveguide channel. The measuring optical waveguide channel includes an SPR sensing film layer. The measuring optical waveguide channel and the reference optical waveguide channel are independently configured and substantially parallel one to another. The bottom layer has a refractive index higher than a refractive index of the optical waveguide layer.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: March 16, 2010
    Assignee: Council of Agriculture, Executive Yuan
    Inventors: Chii-Wann Lin, Jheng-Long Lee, Rong-Huay Juang, Shi-Ming Lin, Chih-Kung Lee, Rea-Min Chu, Ching-Ho Wang, Jim-Min Fang, Tsung-Liang Chuang
  • Patent number: 7675616
    Abstract: An absorption spectroscopy gauge to measure chemical concentrations in a post-detonation combustion cloud of energetic materials. A broadband light source coupled to an optical fiber guides light into a gauge via a first leg where a plano-convex lens collimates the light source internally. The light reflects off a mirror and passes through an absorption region before entering a second leg of the gauge where it is refocused into a different fiber and sent to a time-resolved spectroscopy system for analysis. The time-resolved spectroscopy system can include a spectrometer and a steak camera. The two legs of the gauge are arranged as separate halves connected by a plurality of rods that can be adjusted to change the length of the absorption region. The gauge is arranged to include stainless steel cone shaped tips to minimize added turbulence brought upon by its use.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: March 9, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Joel R. Carney, John Wilinson
  • Patent number: 7675611
    Abstract: We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: March 9, 2010
    Assignee: Ahura Scientific Inc.
    Inventors: Masud Azimi, Arran Bibby, Christopher D. Brown, Peili Chen, Kevin J. Knopp, Daryoosh Vakhshoori, Peidong Wang
  • Patent number: 7671993
    Abstract: In one embodiment, light having a first spectrum is filtered from a mixed light. Light having a second spectrum, different from the first spectrum, is also filtered from the mixed light. An intensity of the light having the first spectrum, and an intensity of the light having the second spectrum, are then sensed. From the sensed intensities of the lights having the first and second spectrums, an intensity of light having a third spectrum is estimated.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: March 2, 2010
    Assignee: Avago Technologies ECBU IP (Singapore) Pte. Ltd.
    Inventors: Len-Li Kevin Lim, Ken A. Nishimura
  • Patent number: 7667829
    Abstract: An optical property measurement apparatus is equipped with an optical system unit that selectively places an opening section for passing illumination light, a microlens array for measuring wavefront aberration, and a polarization detection system for measuring a polarization state of the illumination light on an optical path of the illumination light. Accordingly an illumination shape and a size of an illumination optical system, wavefront aberration of a projection optical system and a polarization state of the illumination light can be measured together. Therefore, for example, even when exposure is performed with polarized illumination that is a type of modified illumination, highly-accurate exposure can be achieved by adjusting various optical systems based on the measurement results.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: February 23, 2010
    Assignee: Nikon Corporation
    Inventors: Koji Kaise, Toru Fujii, Yasushi Mizuno
  • Patent number: 7663749
    Abstract: A system and method to improve the accuracy of the measure of constituent element(s) in a sample containing domains potentially including the constituent element(s) are described herein. For each domain, the volume of the domain is estimated and the concentration of the constituent element(s) in the domain is determined using LIBS. When all the domains have been analyzed, the volumetric concentration of the domains is summed and divided by the total volume of the sample. Accordingly, by limiting the concentration analysis to separate domains, it is possible to improve the accuracy of the concentration analysis.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: February 16, 2010
    Assignee: Institut National D'Optique
    Inventors: Marc Lévesque, Alain Cournoyer
  • Patent number: 7659968
    Abstract: A multi-modal data acquisition system for detecting target material on a biological reaction surface, the system comprising a radiation source for generating an incoming beam that impinges on the biological reaction surface at an oblique incidence angle and produces a reflected beam, an interferometric detector for detecting an interferometric signal from the illuminated surface, the reflected beam being directed to the interferometric detector, a fluorescence detector for detecting a fluorescence signal from the illuminated surface; the fluorescence detector being positioned to substantially minimize the incidence of the reflected beam; and a processing system for receiving the interferometric and fluorescence signals and determining the presence or absence of target material on the biological reaction surface. A reaction surface conditioned for the simultaneous collection of fluorescence, interferometric and other signals.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: February 9, 2010
    Assignee: Purdue Research Foundation
    Inventors: Xuefeng Wang, David D. Nolte, Manoj Varma, Brian Weichel, Timothy Norwood, Fouad Sayegh, Ming Zhao
  • Patent number: 7659978
    Abstract: A pulse photobleaching methodology wherein a monochromatic illumination (e.g., laser illumination) having a higher power intensity (photobleaching power) just below the photodamage threshold of a luminescent sample is initially used to significantly attenuate sample luminescence without photothermally destroying the sample material. Thereafter, the laser power density may be reduced to a significantly lower level (analytical power level) to carry out spectroscopic measurements (e.g., collection of Raman scattered photons) on the sample. In one embodiment, the laser illumination wavelength remains the same despite changes in laser power intensity. Some figures-of-merit may be computed from optical measurements made at the analytical power level to guide the photobleaching process. Sample-dependent combinations of laser power density and short exposure times may be obtained to significantly expedite photobleaching to assist in collection of sample spectral data in the field without a long wait.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 9, 2010
    Assignee: ChemImage Corporation
    Inventors: David Tuschel, Arjun Bangalore
  • Patent number: 7656524
    Abstract: The present invention relates generally to the field of spectroscopy, and more particularly to tip-enhanced Raman spectroscopy that provides an enhanced contrast-ratio of a near-field Raman signal to a background signal. The near-field Raman signal is captured from a small volume of material near a metal-coated tip thereby achieving submicron lateral resolution.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: February 2, 2010
    Assignee: The University of Akron
    Inventors: Alexei P. Sokolov, Alexander Kisliuk, Disha Mehtani, Ryan D. Hartschuh, Nam-Heui Lee
  • Patent number: 7655908
    Abstract: An enhanced vision system and method for use with vision systems with an imager sensitive to infrared radiation of less than 2-microns in wavelength, to produce a first image signal. Another imager sensitive to infrared radiation at least 3-microns in wavelength may be used to produce a second image signal. Preferably, the first image signal represents sensed electric light sources, and the second image signal represents sensed background such as terrain, runways, structures, and obstacles. A signal processor combines an image signal representing locally maximum values of the first image signal with the second image signal to create a displayed image.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 2, 2010
    Assignee: FLIR Systems, Inc.
    Inventor: Jones Richard Kerr
  • Patent number: 7652764
    Abstract: The method enables a heterogeneous object containing fluorophores to be examined. A first face of the object is illuminated with an excitation light exciting the fluorophores. The light emitted by a second face of the object, opposite the first face, is detected by means of a matrix of detectors. The fluorophore distribution is determined by means of relevant Green's functions each associated with a selected source and/or detector, able to be assimilated to a point of the surface of the object. Thus, a first spatial coordinate of each of the relevant Green's functions corresponds to a point of the first face of the object and/or a second spatial coordinate of each of the relevant Green's functions corresponds to a point of the second face of the object.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: January 26, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Lionel Herve, Jean-Marc Dinten, Anne Koenig
  • Patent number: 7652765
    Abstract: A hyper-spectral imaging system comprises imaging foreoptics (1020) to focus on a scene or object of interest (1010) and transfer the image of said scene or object (1010) onto the focal plane of a spatial light modulator (1030), a spatial light modulator (1030) placed at a focal plane of said imaging foreoptics (1020), an imaging dispersion device (1040) disposed to receive an output image of the spatial light modulator (1030), and an image collecting device disposed to receive the output of the imaging dispersion device (1040).
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: January 26, 2010
    Assignee: Plain Sight Systems, Inc.
    Inventors: Frank Geshwind, Andreas C. Coppi, Richard A. Deverse, Ronald R. Coifman, William G. Fateley
  • Patent number: 7649618
    Abstract: A system and method for collecting Raman data sets without the “contaminating” effect of luminescence emitted photons. Using a frame transfer CCD for time resolved data collection, Raman imaging may be performed without photobleaching the sample. The system may include a light source, a frame transfer CCD, an optical lens and at least one controller. The light source illuminates the sample with a plurality of photons to generate scattered photons from the sample. The frame transfer CCD has an image array and a storage array. The optical lens collects scattered photons and directs the scattered photons to the image array. The controller transfers a Raman data set representative of the scattered photons from the image array to the storage array. The frame transfer CCD may be configured so as the image array integrates the scattered photons during a Raman integration time and the controller transfers the Raman data set from the image array to storage array during a parallel transfer time.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: January 19, 2010
    Assignee: ChemImage Corporation
    Inventors: David Tuschel, Jingyun Zhang
  • Patent number: 7639357
    Abstract: To provide a laser scanning microscope capable of enhancing the degree of freedom of observation while keeping its structure simple. Accordingly, a laser scanning microscope includes a light source, a spectroscopic unit guiding light from the light source to a specimen and guiding the light from the specimen to a detector, light path switching units switching a light path between the spectroscopic unit and the specimen to one among a plurality of light paths with different routes, and a plurality of light deflecting units each disposed in each of the plurality of light paths.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 29, 2009
    Assignee: Nikon Corporation
    Inventor: Hisashi Okugawa
  • Patent number: 7636153
    Abstract: A combined gas sensor device allowing the measuring of the concentration of a gas by tunable diode laser spectrometry as well as by resonant photo-acoustics within one housing. A laser beam used for laser spectrometry is sent across the openings of a measuring cell usually used for resonant photo-acoustic determination. Thus, both measuring principles use the same gas sensing module with a minimum of space consumption, so that the device can be produced with minimum dimensions. Further, a common opto-electronics and electronics platform can be used which reduces the overall costs of such a combined gas sensor.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: December 22, 2009
    Assignee: IR Microsystems SA
    Inventors: Bert Willing, Markus Kohli, Andreas Seifert
  • Patent number: 7630065
    Abstract: In order to be able to take an image of a specimen emitting low light in a short exposure time by a cooled CCD at about 0° C., a low-light specimen image pickup unit has an imaging optical system forming a specimen image of a specimen having a point light source emitting a low light, and the low-light specimen image pickup unit further has an image pickup unit having a plurality of pixels receiving incident light, for taking an image corresponding to the specimen image. In the low-light specimen image pickup unit, the imaging optical system is telecentric to a side of the specimen image of the imaging optical system, and condenses the low light emitted from the point light source to form an Airy disk of a size which is substantially the same as a pixel of the pixels, or which is smaller than the pixel. Here, the pixel receives the low light emitted from the point light source.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: December 8, 2009
    Assignee: Olympus Corporation
    Inventors: Hirobumi Suzuki, Shinichi Dosaka
  • Patent number: 7626696
    Abstract: A system and method to obtain a variable field of view (FOV) of a sample without requiring an increase in an imaging CCD array size. In a fiber array spectral translator (FAST) based chemical imaging system, the fibers in the fiber bundle may be organized in different 2D “zones”. Each zone may include a predetermined number of fibers. Each 2D zone of fibers at the signal input end is organized as a separate linear array (1D) at the spectrometer slit input end. Depending on the user-selected FOV, one or more zones of fibers may be selected for signal input (into the spectrometer) by a motorized mobile slit port or linear translating stage, which will sequentially scan output from each selected linear fiber array into the spectrometer slit. The user can switch from one FOV size to another, thereby activating the linear translating stage to gather signals from appropriate linear fiber arrays corresponding to fiber zones associated with the selected FOV.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: December 1, 2009
    Assignee: ChemImage Corporation
    Inventor: Jingyun Zhang
  • Patent number: 7626688
    Abstract: A high-speed optical sensing device is provided in the present invention. The high-speed optical sensing device has an optical detector, a lens set, and a beam splitter. The optical detector is utilized for detecting luminous intensity. The lens set is utilized for concentrating light beams toward a color analyzer. The beam splitter is aligned to the illuminating device to be detected and is utilized to separate the light beam generated by the illuminating device to the optical detector and the lens set simultaneously.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: December 1, 2009
    Assignee: Chroma Ate Inc.
    Inventors: Tsung-Hsien Ou, Hsin-Yueh Sung, Hong-Da Jian, Chi-Cheng Kuan, Wen-Chi Luo
  • Patent number: 7623232
    Abstract: A method of ablating a viable biological pathogen in a sample. A viable biological pathogen in a portion of the sample is identified by irradiating the sample; assessing radiation scattered from the sample for radiation that exhibits a Raman shift characteristic of the viable biological pathogen, and delivering an ablating agent to the identified portion.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: November 24, 2009
    Assignee: ChemImage Corporation
    Inventors: Shona Stewart, John S. Maier, Patrick J. Treado