Patents Examined by Fang-Xing Jiang
  • Patent number: 9768090
    Abstract: An embodiment device package includes a package substrate and a first and a second die bonded to the package substrate. The package substrate includes a build-up portion comprising a first contact pad and a plurality of bump pads. The package substrate further includes an organic core attached to the build-up portion, a through-via electrically connected to the first contact pad and extending through the organic core, a second contact pad on the through-via, a connector on the second contact pad, and a cavity extending through the organic core. The cavity exposes the plurality of bump pads, and the first die is disposed on the cavity and is bonded to the plurality of bump pads.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: September 19, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Min Liang, Mirng-Ji Lii, Jiun Yi Wu
  • Patent number: 9754871
    Abstract: A switch circuit package module includes a semiconductor switch unit and a capacitor unit. The semiconductor switch unit includes a first semiconductor switch element and a second semiconductor switch element. The first semiconductor switch element includes sub micro-switch elements, each sub micro-switch element configured with a drain electrode and a source electrode. The second semiconductor switch element includes sub micro-switch elements, each sub micro-switch element configured with a drain electrode and a source electrode. The capacitor unit includes a plurality of capacitors.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: September 5, 2017
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Zeng Li, Shou-Yu Hong, Jian-Hong Zeng
  • Patent number: 9755124
    Abstract: An array of housings with housing bodies and lenses is molded, or an array of housing bodies is molded and bonded with lenses to form an array of housings with housing bodies and lenses. Light-emitting diodes (LEDs) are attached to the housings in the array. An array of metal pads may be bonded to the back of the array or insert molded with the housing array to form bond pads on the back of the housings. The array is singulated to form individual LED modules.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: September 5, 2017
    Assignees: Koninklijke Philips N.V., Lumileds LLC
    Inventors: Serge J. Bierhuizen, Nanze Patrick Wang, Gregory W. Eng, Decai Sun, Yajun Wei
  • Patent number: 9754930
    Abstract: An integrated circuit includes an NMOS SCR in which a p-type body well of the NMOS transistor provides a base layer for a vertical NPN layer stack. The base layer is formed by implanting p-type dopants using an implant mask which has a cutout mask element over the base area, so as to block the p-type dopants from the base area. The base layer is implanted concurrently with p-type body wells under NMOS transistors in logic components in the integrated circuit. Subsequent anneals cause the p-type dopants to diffuse into the base area, forming a base with a lower doping density that adjacent regions of the body well of the NMOS transistor in the NMOS SCR. The NMOS SCR may have a symmetric transistor, a drain extended transistor, or may be a bidirectional NMOS SCR with a symmetric transistor integrated with a drain extended transistor.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: September 5, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Henry Litzmann Edwards, Akram A. Salman
  • Patent number: 9735137
    Abstract: A switch circuit package module includes at least a semiconductor switch unit and at least a first capacitor unit. The semiconductor switch unit includes a first semiconductor switch element and a second semiconductor switch element. The first semiconductor switch element and the second semiconductor switch element include a plurality of sub micro-switch elements. The capacitor unit includes a plurality of capacitors configured to cooperate with the sub micro-switch elements. The capacitors are arranged in a symmetrical distribution surrounded the semiconductor switch unit, such that impedances of any two symmetrical commutation loops each of which mainly consists of one capacitor and two sub micro-switch elements from the first semiconductor switch element and second semiconductor switch element respectively are close to or the same with each other.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: August 15, 2017
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Zeng Li, Shou-Yu Hong, Jian-Hong Zeng
  • Patent number: 9711612
    Abstract: A semiconductor device structure and a method for fabricating the same. A method for fabricating semiconductor device structure includes forming gate lines on a semiconductor substrate; forming gate sidewall spacers surrounding the gate lines; forming respective source/drain regions in the semiconductor substrate and on either side of the respective gate lines; forming conductive sidewall spacers surrounding the gate sidewall spacers; and cutting off the gate lines, the gate sidewall spacers and the conductive sidewall spacers at predetermined positions, in which the cut gate lines are electrically isolated gates, and the cut conductive sidewall spacers are electrically isolated lower contacts. The method is applicable to the manufacture of contacts in integrated circuits.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: July 18, 2017
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin
  • Patent number: 9711482
    Abstract: A semiconductor package may include first semiconductor chips disposed in a rotationally symmetrical structure. First bonding pads are arranged over the bottom surfaces of the first semiconductor chips. The semiconductor package may also include a first encapsulation member formed to surround at least side surfaces of the first semiconductor chips. The semiconductor package may also include via patterns formed in the first encapsulation member. The semiconductor package may also include second semiconductor chips stacked over top surfaces of the first semiconductor chips and the first encapsulation member including the via patterns in such a way as to form step shapes with the first semiconductor chips. Second bonding pads electrically connected to the via patterns are arranged over bottom surfaces of the second semiconductor chips.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: July 18, 2017
    Assignee: SK hynix Inc.
    Inventors: Sang Eun Lee, Eun Ko, Yong Jae Park
  • Patent number: 9704783
    Abstract: A device includes a substrate, and a plurality of dielectric layers over the substrate. A plurality of metallization layers is formed in the plurality of dielectric layers, wherein at least one of the plurality of metallization layers comprises a metal pad. A through-substrate via (TSV) extends from the top level of the plurality of the dielectric layers to a bottom surface of the substrate. A deep conductive via extends from the top level of the plurality of dielectric layers to land on the metal pad. A metal line is formed over the top level of the plurality of dielectric layers and interconnecting the TSV and the deep conductive via.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: July 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Ku-Feng Yang
  • Patent number: 9691693
    Abstract: A component, e.g., interposer has first and second opposite sides, conductive elements at the first side and terminals at the second side. The terminals can connect with another component, for example. A first element at the first side can comprise a first material having a thermal expansion coefficient less than 10 ppm/° C., and a second element at the second side can comprise a plurality of insulated structures separated from one another by at least one gap. Conductive structure extends through at least one insulated structure and is electrically coupled with the terminals and the conductive elements. The at least one gap can reduce mechanical stress in connections between the terminals and another component.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: June 27, 2017
    Assignee: Invensas Corporation
    Inventors: Andrew Cao, Michael Newman
  • Patent number: 9685479
    Abstract: An image sensor with a pinned photodiode includes a photodiode formed in a substrate by implanting dopants of a first type through one or more dielectric layers formed over the substrate. A pinning layer for the photodiode may be formed by implanting dopants of a second type through the same one or more dielectric layers. The pinning layer may be formed over a photodiode region of the substrate. The concentration of dopants of the second type may have a maximum value in dielectric layers over the photodiode that exceeds the concentration of dopants of the second type in the substrate below. The photodiode and pinning layer may both be formed by implanting ions of the first and second type respectively through a dielectric layer formed after etching away a portion of another dielectric layer, having a different thickness, and having different optical transmission properties than the another dielectric layer.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: June 20, 2017
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Eric G. Stevens
  • Patent number: 9685523
    Abstract: This invention discloses a semiconductor device disposed in a semiconductor substrate. The semiconductor device includes a first semiconductor layer of a first conductivity type on a first major surface. The semiconductor device further includes a second semiconductor layer of a second conductivity type on a second major surface opposite the first major surface. The semiconductor device further includes an injection efficiency controlling buffer layer of a first conductivity type disposed immediately below the second semiconductor layer to control the injection efficiency of the second semiconductor layer.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: June 20, 2017
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Harsh Naik, Lingpeng Guan, Anup Bhalla, Sik Lui
  • Patent number: 9673708
    Abstract: A switched-capacitor DC-to-DC converter includes a logic cell and a capacitor cell vertically overlapping with the logic cell. The logic cell has a plurality of active elements disposed over a first substrate. The capacitor cell has a capacitor over a second substrate. A first interlayer insulation layer disposed over the first substrate is bonded to a second interlayer insulation layer disposed over the second substrate. A first through via connected to any one of interconnection patterns of the logic cell and a second through via connected to a lower electrode pattern of the capacitor cell are connected to each other through a first external circuit pattern. A third through via connected to an upper electrode pattern of the capacitor cell and a fourth through via connected to another one of the interconnection patterns of the logic cell are connected to each other through a second external circuit pattern.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 6, 2017
    Assignee: SK Hynix Inc.
    Inventor: Jae Ho Hwang
  • Patent number: 9666453
    Abstract: A semiconductor package is provided, which includes: a substrate having a metal pattern layer; a semiconductor die formed on the substrate; and an underfill filled between the substrate and the semiconductor die. At least an opening is formed in the metal pattern layer to reduce the area of the metal pattern layer on the substrate, thereby reducing the contact area between the underfill and the metal pattern layer, hence eliminating the underfill delamination.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: May 30, 2017
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chang-Fu Lin, Ho-Yi Tsai, Chin-Tsai Yao
  • Patent number: 9658485
    Abstract: A display panel includes a first substrate, a second substrate corresponding to the first substrate, a plurality of color films formed on one side of the first substrate and dividing the first substrate into a plurality of color film regions and a plurality of light shielding regions, a first polarizer formed on the first substrate, and a second polarizer formed on the second substrate. The first polarizer includes a plurality of first regions corresponding to the color film regions and a plurality of second regions corresponding to the light shielding regions. The direction of the polarization axis of the second regions is different from the polarization direction of the first regions. The second polarizer is configured to be combined with the first polarizer to cause light passing through the second polarizer to be transmitted through the first regions and to be blocked by the second regions.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: May 23, 2017
    Assignees: SHANGHAI TIANMA MICRO-ELECTRONICS CO., LTD., TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventors: Wenze Shan, Zhongshou Huang, Zhaokeng Cao, Chen Liu
  • Patent number: 9653453
    Abstract: An electrostatic discharge (ESD) protection device is disclosed including at least an NPN transistor and a PNP transistor coupled between a first node and a second node, wherein the ESD protection device may be configured to sink current from the first node to the second node in response to an ESD event. The transistors may be coupled such that a collector of the NPN may be coupled to the first node. A collector of the PNP may be coupled to the second node. A base of the NPN may be coupled to the emitter of the PNP. An emitter of the NPN may be coupled to a base of the PNP.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: May 16, 2017
    Assignee: Sofics BVBA
    Inventors: Bart Sorgeloos, Benjamin Van Camp, Sven Van Wijmeersch, Wim Vanhouteghem
  • Patent number: 9650243
    Abstract: A wafer seal ring may be formed on a first and/or a second wafer. One or both of the first and/or second wafers may have one or more dies formed thereon. The wafer seal ring may be formed to surround the dies of a corresponding wafer. One or more die seal rings may be formed around the one or more dies. The wafer seal ring may be formed to a height that may be approximately equal to a height of one or more die seal rings formed on the first and/or second wafer. The wafer seal ring may be formed to provide for eutectic or fusion bonding processes. The first and second wafers may be bonded together to form a seal ring structure between the first and second wafers. The seal ring structure may provide a hermetic seal between the first and second wafers.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Ying Chen, Yi Hsun Chiu, Ching-Hou Su, Chyi-Tsong Ni
  • Patent number: 9653443
    Abstract: An embodiment device includes a first die, a second die electrically connected to the first die, and a heat dissipation surface on a surface of the second die. The device further includes a package substrate electrically connected to the first die. The package substrate includes a through-hole, and the second die is at least partially disposed in the through hole.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Mirng-Ji Lii, Chien-Hsun Lee
  • Patent number: 9640601
    Abstract: A display apparatus including a pixel including a first thin-film transistor (TFT) and a second TFT connected to the first TFT, the display apparatus includes a substrate, a semiconductor layer disposed on the substrate and including an active region of the first TFT and an active region of the second TFT, a first gate layer disposed on the semiconductor layer and including a gate of the first TFT and a gate of the second TFT, a second gate layer disposed on the first gate layer and including a connection node connecting the gate of the first TFT to the active region of the second TFT, and a line layer disposed on the second gate layer and configured to supply a driving voltage to the pixel.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: May 2, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventor: Hyunyoung Kim
  • Patent number: 9627265
    Abstract: A method comprises providing a substrate with a second conductivity type, growing a first epitaxial layer having the second conductivity type, growing a second epitaxial layer having a first conductivity type, forming a trench in the first epitaxial layer and the second epitaxial layer, forming a gate electrode in the trench, applying an ion implantation process using first gate electrode as an ion implantation mask to form a drain-drift region, forming a field plate in the trench, forming a drain region in the second epitaxial layer, wherein the drain region has the first conductivity type and forming a source region in the first epitaxial layer, wherein the source region has the first conductivity type, and wherein the source region is electrically coupled to the field plate.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chih Su, Hsueh-Liang Chou, Chun-Wai Ng, Ruey-Hsin Liu
  • Patent number: 9614051
    Abstract: A method for fabricating a semiconductor device includes providing a substrate; and forming at least one dummy gate structure on the substrate. The method also includes forming doping regions in the substrate at both sides of the dummy gate structure; forming an interlayer dielectric layer on the d the dummy gate structure; performing a first step thermal annealing process to increase a density of the interlayer dielectric layer; and activating doping ions for a first time without an excess diffusion of the doping ions in the doping region; and removing the dummy gate structure to expose the surface of the substrate to form a trench in the annealed interlayer dielectric layer. Further, the method also includes forming a gate dielectric layer on the surface of the substrate on bottom of the trench; and performing a second step thermal annealing process to activate the doping ions for a second time.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: April 4, 2017
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventor: Jie Zhao