Patents Examined by Fang-Xing Jiang
  • Patent number: 9287188
    Abstract: A wafer seal ring may be formed on a first and/or a second wafer. One or both of the first and/or second wafers may have one or more dies formed thereon. The wafer seal ring may be formed to surround the dies of a corresponding wafer. One or more die seal rings may be formed around the one or more dies. The wafer seal ring may be formed to a height that may be approximately equal to a height of one or more die seal rings formed on the first and/or second wafer. The wafer seal ring may be formed to provide for eutectic or fusion bonding processes. The first and second wafers may be bonded together to form a seal ring structure between the first and second wafers. The seal ring structure may provide a hermetic seal between the first and second wafers.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: March 15, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ting-Ying Chen, Yi Hsun Chiu, Ching-Hou Su, Chyi-Tsong Ni
  • Patent number: 9269732
    Abstract: A chip package is provided. The chip package includes a chip, having a plurality of conductive pads disposed along a periphery of the chip, wherein the conductive pads have a width. A seal ring includes a plurality of metal strips disposed within a space between the two adjacent conductive pads. Each metal strip is electrically connected to at most one of the two adjacent conductive pads.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: February 23, 2016
    Assignee: XINTEC INC.
    Inventor: Chia-Lun Tsai
  • Patent number: 9263511
    Abstract: A package includes a chip that has a metal-insulator-metal (MIM) capacitor formed in a first polymer layer and a metallic pillar formed on the MIM capacitor. A molding compound surrounds the chip, a second polymer layer is formed on the chip and the molding compound, a third polymer layer is formed on the second polymer layer, an interconnect structure is formed between the second polymer layer and the third polymer layer and electrically coupled to the metallic pillar and the MIM capacitor, and a bump is formed over and electrically coupled to the interconnect structure.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: February 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chen-Hua Yu, Shang-Yun Hou, Wen-Chih Chiou, Jui-Pin Hung, Der-Chyang Yeh, Chiung-Han Yeh
  • Patent number: 9257338
    Abstract: The disclosure provides a TSV substrate structure and the stacked assembly of a plurality of the substrate structures, the TSV substrate structure including: a substrate comprising a first surface, a corresponding second surface, and a TSV communicating the first surface with the second surface through the substrate; and a conductor unit completely filling the TSV, the conductor unit comprising a conductor body which has a first and a second ends corresponding to the first and second surfaces of the substrate, respectively.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: February 9, 2016
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chung-Chih Wang, Pei-Jer Tzeng, Cha-Hsin Lin, Tzu-Kun Ku
  • Patent number: 9245960
    Abstract: Disclosed are embodiments of a lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) having tapered dielectric field plates positioned laterally between conductive field plates and opposing sides of a drain drift region of the LEDMOSFET. Each dielectric field plate comprises, in whole or in part, an airgap. These field plates form plate capacitors that can create an essentially uniform horizontal electric field profile within the drain drift region so that the LEDMOSFET can exhibit a specific, relatively high, breakdown voltage (Vb). Tapered dielectric field plates that incorporate airgaps provide for better control over the creation of the uniform horizontal electric field profile within the drain drift region, as compared to tapered dielectric field plates without such airgaps and, thereby ensure that the LEDMOSFET exhibits the specific, relatively high, Vb desired. Also disclosed herein are embodiments of a method of forming such an LEDMOSFET.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: January 26, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Michel J. Abou-Khalil, Theodore J. Letavic, Stephen E. Luce, Anthony K. Stamper
  • Patent number: 9240401
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a semiconductor device includes: a substrate; a first region over the substrate; a second region laterally adjacent to the first region; a third region disposed laterally adjacent to the second region on a side of the second region opposite the first region; a fourth region disposed within a portion of the first region proximate the second region; a fifth region disposed within a portion of the second region proximate the first region, wherein the fourth region and the fifth region are separated by a first isolation area; a sixth region disposed within a portion of the third region proximate the second region; and a seventh region disposed within the second region and below the fifth region.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: January 19, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Yu Kuo, Chin-Yuan Ko
  • Patent number: 9236278
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a dummy-die paddle having a first inactive side facing up, a second inactive side facing down; forming an insulator in a single continuous structure around and in direct contact with the first inactive side; and mounting an integrated circuit over the dummy-die paddle and the insulator, the integrated circuit and the dummy-die paddle having the same coefficient of thermal expansion as the dummy-die paddle.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: January 12, 2016
    Assignee: STATS ChipPAC Ltd.
    Inventors: Rui Huang, Xusheng Bao, Kang Chen, Yung Kuan Hsiao, Hin Hwa Goh
  • Patent number: 9224688
    Abstract: A device includes a substrate, a metal pad over the substrate, and a metal trace electrically disconnected from the metal pad. The metal pad and the metal trace are level with each other. A passivation layer includes a portion overlapping an edge portion of the metal pad. A metal pillar is overlying the metal pad, and is electrically connected to the metal pad. The metal trace has a portion overlapped by the metal pillar.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chita Chuang, Yao-Chun Chuang, Chih-Hua Chen, Chen-Cheng Kuo, Chen-Shien Chen
  • Patent number: 9177917
    Abstract: Some embodiments include methods for depositing copper-containing material utilizing physical vapor deposition of the copper-containing material while keeping a temperature of the deposited copper-containing material at greater than 100° C. Some embodiments include methods in which openings are lined with a metal-containing composition, copper-containing material is physical vapor deposited over the metal-containing composition while a temperature of the copper-containing material is no greater than about 0° C., and the copper-containing material is then annealed while the copper-containing material is at a temperature in a range of from about 180° C. to about 250° C. Some embodiments include methods in which openings are lined with a composition containing metal and nitrogen, and the lined openings are at least partially filled with copper-containing material.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: November 3, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Dale W. Collins, Joe Lindgren
  • Patent number: 9159679
    Abstract: According to one disclosed embodiment, a semiconductor package for integrated passives and a semiconductor device comprises a high permeability structure formed over a surface of the semiconductor package and surrounding a contact body of the semiconductor package, the contact body being connected to an output of the semiconductor device. The contact body can be, for example, a solder bump. The high permeability structure causes a substantial increase in inductance of the contact body so as to form an increased inductance inductor coupled to the output of the semiconductor device. In one embodiment, the semiconductor package further comprises a blanket insulator formed over the high permeability structure, and a capacitor stack formed over the blanket insulator. In one embodiment, the semiconductor device comprises a group III-V power semiconductor device.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: October 13, 2015
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Patent number: 9153605
    Abstract: A thin film transistor array substrate may include a thin film transistor including an active layer, a gate electrode, source and drain electrodes, a first insulation layer arranged between the active layer and the gate electrode, and a second insulation layer arranged between the gate electrode and the source and drain electrodes, a pixel electrode arranged on the first insulation layer and comprising the same material as the gate electrode, a capacitor comprising a first electrode arranged on the same layer as the active layer and a second electrode arranged on the same layer as the gate electrode, a pad electrode arranged on the second insulation layer and comprising the same material as the source and drain electrodes, a protection layer formed on the pad electrode, and a third insulation layer formed on the protection layer and exposing the pixel electrode.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 6, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dae-Woo Kim, Jong-Hyun Park
  • Patent number: 9136376
    Abstract: A junctionless vertical gate transistor includes an active pillar vertically protruding from a substrate and including a first impurity region, a second impurity region and a third impurity region sequentially formed over the first impurity region; gate electrodes coupled to sidewalls of the second impurity region; and bit lines arranged in a direction of intersecting with the gate electrodes and each contacting the first impurity region. The first to the third impurity regions include impurities of the same polarity.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: September 15, 2015
    Assignees: SK HYNIX INC., KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jung-Min Moon, Tae-Kyun Kim, Seok-Hee Lee
  • Patent number: 9111928
    Abstract: A switch circuit package module includes a semiconductor switch unit and a capacitor unit. The semiconductor switch unit includes sub micro-switch elements. The capacitor unit is arranged at a periphery of the semiconductor switch unit or stacked on a surface of the semiconductor switch unit, such that impedances of commutation loops between the capacitor unit and the sub micro-switch elements are close to or the same with each other.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: August 18, 2015
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Zeng Li, Shou-Yu Hong, Jian-Hong Zeng
  • Patent number: 9112139
    Abstract: A spin transistor according to an embodiment includes: a first magnetic layer formed above a substrate and serving as one of a source and a drain; an insulating film having a lower face facing to an upper face of the first magnetic layer, an upper face opposed to the lower face, and a side face different from the lower and upper faces, the insulating film being formed on the upper face of the first magnetic layer and serving as a channel; a second magnetic layer formed on the upper face of the insulating film and serving as the other one of the source and the drain; a gate electrode formed along the side face of the insulating film; and a gate insulating film located between the gate electrode and the side face of the insulating film.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: August 18, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomoaki Inokuchi, Takao Marukame, Tetsufumi Tanamoto, Hideyuki Sugiyama, Mizue Ishikawa, Yoshiaki Saito
  • Patent number: 9099622
    Abstract: An optoelectronic semiconductor component is provided, having a connection carrier (2), an optoelectronic semiconductor chip (1), which is arranged on a mounting face (22) of the connection carrier (2), and a radiation-transmissive body (3), which surrounds the semiconductor chip (1), wherein the radiation-transmissive body (3) contains a silicone, the radiation-transmissive body (3) comprises at least one side face (31) which extends at least in places at an angle ? of <90° to the mounting face (22) and the side face (3) is produced by a singulation process.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: August 4, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Michael Binder, Alexander Linkov, Thomas Zeiler, Peter Brick
  • Patent number: 9093411
    Abstract: A pad structure in a semiconductor wafer for wafer testing is described. The pad structure includes at least two metal pads connected there-between by a plurality of conductive visa in one or more insulation layers. A plurality of contact bars in contact with the bottom-most metal pad extends substantially vertically from the bottom-most metal pad into the substrate. An isolation structure substantially surrounds the plurality of contact bars to isolate the pad structure.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: July 28, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ying-Ju Chen, Hsien-Wei Chen, Hao-Yi Tsai, Mirng-Ji Lii
  • Patent number: 9080967
    Abstract: A chemically sensitive field effect transistor includes a substrate, a conductor track structure situated on the substrate, and a functional layer which is contacted via the conductor track structure. To be able to form a thin, oxidation-stable and temperature-stable conductor track structure, the conductor track structure is made of a metal mixture which includes platinum and one or more metals selected from the group made up of rhodium, iridium, ruthenium, palladium, osmium, gold, scandium, yttrium, lanthanum, the lanthanides, titanium, zirconium, hafnium, niobium, tantalum, chromium, tungsten, rhenium, iron, cobalt, nickel, copper, boron, aluminum, gallium, indium, silicon, and germanium.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: July 14, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Richard Fix, Markus Widenmeyer
  • Patent number: 9076799
    Abstract: A solution for indexing electronic devices includes corresponding electronic device including a die integrating an electronic circuit, the die having at least one index including a reference defining an ordered alignment of a plurality of locations on the die and a marker for defining a value of the index according to an arrangement of the marker with respect to the reference. In one embodiment, the marker includes a plurality of markers each one arranged at a selected one of the locations, the selected location of the marker defining a value of a digit associated with a corresponding power of a base higher than 2 within a number in a positional notation in the base representing the value of the index.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: July 7, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Emanuele Brenna, Antonio Di Franco
  • Patent number: 9064877
    Abstract: The present invention provides a semiconductor wafer characterized by including: a silicon substrate which includes chip regions and scribe regions; multiple-layered films formed on the silicon substrate; and a reference mark formed in at least one film constituting the multiple-layered films. In addition, the semiconductor wafer is also characterized in that the reference mark is located at least one of the vertices of a virtual rectangle covering the plurality of chip regions, and in that the reference mark is longer than one side of each of the chip regions.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: June 23, 2015
    Assignee: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Kouichi Nagai
  • Patent number: 9059083
    Abstract: A semiconductor device is disclosed. One embodiment includes a carrier, a semiconductor chip attached to the carrier, a first conducting line having a first thickness and being deposited over the semiconductor chip and the carrier and a second conducting line having a second thickness and being deposited over the semiconductor chip and the carrier. The first thickness is smaller than the second thickness.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: June 16, 2015
    Assignee: Infineon Technologies AG
    Inventors: Henrik Ewe, Joachim Mahler, Manfred Mengel, Reimund Engl, Josef Hoeglauer, Jochen Dangelmaier