Patents Examined by Fang-Xing Jiang
  • Patent number: 9608403
    Abstract: A dual bond pad structure for a wafer with laser die attachment and methods of manufacture are disclosed. The method includes forming a bonding layer on a surface of a substrate. The method further includes forming solder bumps on the bonding layer. The method further includes patterning the bonding layer to form bonding pads some of which comprise the solder bumps thereon. The method further includes attaching a laser diode to selected bonding pads using solder connections formed on the laser diode. The method further includes attaching an interposer substrate to the solder bumps formed on the bonding pads.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 28, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jeffrey P. Gambino, Richard S. Graf, Robert K. Leidy, Jeffrey C. Maling
  • Patent number: 9589872
    Abstract: An integrated dual power converter package is disclosed. The package includes a leadframe having a first control FET paddle configured to support a drain of a first control FET, and a second control FET paddle configured to support a drain of a second control FET. The leadframe further includes a sync FET paddle configured to support a source of a first sync FET and a source of a second sync FET, and a driver integrated circuit (IC) paddle configured to support a driver IC for controlling each of the control FETs and each of the sync FETs. The leadframe may additionally include first and second switched nodes, configured for electrical connection to the first control FET and the first sync FET via a first clip, and to the second control FET and the second sync FET via a second clip, respectively.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: March 7, 2017
    Assignee: Infineon Technologies Americas Corp.
    Inventors: Eung San Cho, Dan Clavette
  • Patent number: 9590092
    Abstract: A Super Junction Field Effect Transistor (FET) device includes a charge compensation region disposed on a substrate of semiconductor material. The charge compensation region includes a set of strip-shaped P? type columns, a floating ring-shaped P? type column that surrounds the set of strip-shaped P? type columns, and a set of ring-shaped P? type columns that surrounds the floating ring-shaped P? type column. A source metal is disposed above portions of the charge compensation region. The source metal contacts each of the strip-shaped P? type columns and each of the ring-shaped P? type columns. An oxide is disposed between the floating P? type column and the source metal such that the floating P? type column is electrically isolated from the source metal. The device exhibits a breakdown voltage that is 0.2% greater than if the floating P? type column were to contact the source metal.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 7, 2017
    Assignee: IXYS Corporation
    Inventor: Kyoung Wook Seok
  • Patent number: 9589986
    Abstract: The invention provides an array substrate, a method therefor and a display device. The array substrate includes: a substrate, and a thin film transistor (TFT) and a pull-down capacitor disposed on the substrate. The TFT includes: a gate, a gate insulating layer, a channel layer, a source, a drain and a passivation layer. The passivation layer is disposed with a via hole corresponding to the drain, a pixel electrode is connected to the drain through the via hole. The pull-down capacitor includes: a first conductive layer, a first spacer layer, a filling layer, a second spacer layer and a second conductive layer successively stacked on the substrate. The sum of thicknesses of the filling layer and the first spacer layer is greater than the sum of thicknesses of the drain and the channel layer, to make the second conductive layer and the pixel electrode be located at different levels.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: March 7, 2017
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Huan Liu
  • Patent number: 9577117
    Abstract: A semiconductor chip, which includes an n-type substrate, over which an n-type epitaxial layer having trenches introduced into the epitaxial layer and filled with p-type semiconductor is situated, the trenches each having a heavily doped p-type region on their upper side, the n+-type substrate being situated in such a manner, that an alternating sequence of n-type regions having a first width and p-type regions having a second width is present; a first metallic layer, which is provided on the front side of the semiconductor chip, forms an ohmic contact with the heavily doped p-type regions and is used as an anode electrode; a second metallic layer, which is provided on the back side of the semiconductor chip, constitutes an ohmic contact and is used as a cathode electrode; a dielectric layer provided, in each instance, between an n-type region and an adjacent p-type region, as well as p-type layers provided between the n-type regions and the first metallic layer.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: February 21, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Ning Qu, Alfred Goerlach
  • Patent number: 9559181
    Abstract: The present disclosure provides a semiconductor device that includes a substrate of a first semiconductor material; a fin feature having a first portion, a second portion and a third portion stacked on the substrate; an isolation feature formed on the substrate and disposed on sides of the fin feature; semiconductor oxide features including a second semiconductor material, disposed on recessed sidewalls of the second portion, defining dented voids overlying the semiconductor oxide features and underlying the third portion; and a gate stack disposed on the fin feature and the isolation feature. The gate stack includes a gate dielectric layer extended into and filling in the dented voids. The first and third portions include the first semiconductor material having a first lattice constant. The second portion includes the second semiconductor material having a second lattice constant different from the first lattice constant.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: January 31, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Chih-Hao Wang, Zhiqiang Wu, Carlos H. Diaz
  • Patent number: 9559129
    Abstract: The present invention provides an antenna in that the adhesive intensity of a conductive body formed on a base film is increased, and a semiconductor device including the antenna. The invention further provides a semiconductor device with high reliability that is formed by attaching an element formation layer and an antenna, wherein the element formation layer is not damaged due to a structure of the antenna. The semiconductor device includes the element formation layer provided over a substrate and the antenna provided over the element formation layer. The element formation layer and the antenna are electrically connected. The antenna has a base film and a conductive body, wherein at least a part of the conductive body is embedded in the base film. As a method for embedding the conductive body in the base film, a depression is formed in the base film and the conductive body is formed therein.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: January 31, 2017
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Kyosuke Ito, Junya Maruyama, Takuya Tsurume, Shunpei Yamazaki
  • Patent number: 9543391
    Abstract: According to example embodiments a transistor includes a channel layer on a substrate, a first channel supply layer on the channel, a depletion layer, a second channel supply layer, source and drain electrodes on the first channel supply layer, and a gate electrode on the depletion layer. The channel includes a 2DEG channel configured to generate a two-dimensional electron gas and a depletion area. The first channel supply layer corresponds to the 2DEG channel and defines an opening that exposes the depletion area. The depletion layer is on the depletion area of the channel layer. The second channel supply layer is between the depletion layer and the depletion area.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: January 10, 2017
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: In-jun Hwang, Jae-joon Oh, Jae-won Lee, Hyo-ji Choi
  • Patent number: 9543450
    Abstract: Semiconductor devices and methods for manufacturing the same are provided. In one embodiment, the method may include: forming a first shielding layer on a substrate, and forming one of source and drain regions with the first shielding layer as a mask; forming a second shielding layer on the substrate, and forming the other of the source and drain regions with the second shielding layer as a mask; removing a portion of the second shielding layer which is next to the other of the source and drain regions; forming a first gate dielectric layer and floating gate layer; forming a mask layer as a spacer on a sidewall of a remaining portion of the second shielding layer, and patterning the floating gate layer with the mask layer as a mask, and then removing the mask layer; and forming a second gate dielectric layer, and forming a gate conductor as a spacer on the sidewall of the remaining portion of the second shielding layer.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: January 10, 2017
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventor: Huilong Zhu
  • Patent number: 9524994
    Abstract: An image sensor with an array of pixels is provided. In order to achieve high image quality, it may be desirable to improve well capacity of individual pixels within the array. When forming each pixel, multiple n-type compartments having p-type isolation regions interposed between compartments may be formed. These compartments may have higher dopant concentrations due to lateral depletion that may occur within multiple PN-NP back to back junctions to assist full depletion at pinning-voltage. Compartments may allow distributing a moderately higher electric-field over a larger portion of the photodiode while lowering peak electric-fields that contribute to dark-current. Compartments will thereby improve the well capacity of the photodiode while preventing additional noise that may degrade the quality of the image signal. The quantity, doping, and depth of these compartments may be selected to maximize well capacity while minimizing effects on operating voltage, manufacturing cost, and power consumption.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: December 20, 2016
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Raminda Madurawe
  • Patent number: 9515089
    Abstract: Fabricating a semiconductor device includes providing a substrate, wherein the substrate is comprised of a base layer, a doped silicon layer on top of the base layer, and an undoped silicon layer on top of the doped silicon layer; forming a hard mask layer on top of the substrate; forming at least one mandrel on top of the hard mask layer; forming a spacer layer on top of exposed portions of the hard mask layer and the at least one mandrel; etching portions of the spacer layer; removing the at least one mandrel; etching regions of the hard mask layer and the undoped silicon layer not protected by remaining portions of the spacer layer to form at least one fin; and removing the remaining portions of the spacer layer.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: December 6, 2016
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Hong He, Sivananda K. Kanakasabapathy, Chiahsun Tseng, Yunpeng Yin
  • Patent number: 9508626
    Abstract: A semiconductor device has a thermally-conductive frame and interconnect structure formed over the frame. The interconnect structure has an electrical conduction path and thermal conduction path. A first semiconductor die is mounted to the electrical conduction path and thermal conduction path of the interconnect structure. A portion of a back surface of the first die is removed by grinding. An EMI shielding layer can be formed over the first die. The first die can be mounted in a recess of the thermally-conductive frame. An opening is formed in the thermally-conductive frame extending to the electrical conduction path of the interconnect structure. A second semiconductor die is mounted over the thermally-conductive frame opposite the first die. The second die is electrically connected to the interconnect structure using a bump disposed in the opening of the thermally-conductive frame.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: November 29, 2016
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Reza A. Pagaila, Yaojian Lin
  • Patent number: 9496252
    Abstract: An integrated circuit includes an NMOS SCR in which a p-type body well of the NMOS transistor provides a base layer for a vertical NPN layer stack. The base layer is formed by implanting p-type dopants using an implant mask which has a cutout mask element over the base area, so as to block the p-type dopants from the base area. The base layer is implanted concurrently with p-type body wells under NMOS transistors in logic components in the integrated circuit. Subsequent anneals cause the p-type dopants to diffuse into the base area, forming a base with a lower doping density that adjacent regions of the body well of the NMOS transistor in the NMOS SCR. The NMOS SCR may have a symmetric transistor, a drain extended transistor, or may be a bidirectional NMOS SCR with a symmetric transistor integrated with a drain extended transistor.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: November 15, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Henry Litzmann Edwards, Akram A. Salman
  • Patent number: 9496218
    Abstract: An integrated circuit device including a through-silicon-via (TSV) structure and methods of manufacturing the same are provided. The integrated circuit device may include the TSV structure penetrating through a semiconductor structure. The TSV structure may include a first through electrode unit including impurities of a first concentration and a second through electrode unit including impurities of a second concentration greater than the first concentration.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: November 15, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Do-Sun Lee, Kun-Sang Park, Byung-Lyul Park, Seong-min Son, Gil-heyun Choi
  • Patent number: 9455183
    Abstract: A semiconductor device includes a solder bump overlying and electrically connected to a pad region, and a metal cap layer formed on at least a portion of the solder bump. The metal cap layer has a melting temperature greater than the melting temperature of the solder bump.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: September 27, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Li Hsiao, Chen-Hua Yu, Shin-Puu Jeng, Chih-Hang Tung, Cheng-Chang Wei
  • Patent number: 9437639
    Abstract: Provided is a semiconductor device which allows an alignment mark used for the manufacturing of a solid-state image sensor (semiconductor device) having a back-side-illumination structure to be formed in a smaller number of steps. The semiconductor device includes a semiconductor layer having a first main surface and a second main surface opposing the first main surface, a plurality of photodiodes which are formed in the semiconductor layer and in each of which photoelectric conversion is performed, a light receiving lens disposed over the second main surface of the semiconductor layer to supply light to each of the photodiodes, and a mark for alignment formed inside the semiconductor layer. The mark for alignment is formed so as to extend from the first main surface toward the second main surface and have a protruding portion protruding from the second main surface in a direction toward where the light receiving lens is disposed.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: September 6, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Keiichiro Kashihara
  • Patent number: 9431356
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In some embodiments, a semiconductor device includes: a substrate; a first region over the substrate, the first region comprising a first n type material; a second region over the substrate and laterally adjacent to the first region, the second region comprising a first p type material; a third region disposed within the second region and laterally separated from the first region, the third region comprising a second n type material; a fourth region disposed atop the third region, the fourth region comprising a second p type material; a fifth region disposed within the first region and laterally separated from the second region, the fifth region comprising a third p type material; and a sixth region disposed atop the fifth region, the sixth region comprising a third n type material.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: August 30, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsi-Yu Kuo, Ko-Yi Lee
  • Patent number: 9431531
    Abstract: A semiconductor device configured to provide high heat dissipation and improve breakdown voltage comprises a substrate, a buried oxide layer over the substrate, a buried n+ region in the substrate below the buried oxide layer, and an epitaxial layer over the buried oxide layer. The epitaxial layer comprises a p-well, an n-well, and a drift region between the p-well and the n-well. The semiconductor device also comprises a source contact, a first electrode electrically connecting the source contact to the p-well, and a gate over a portion of the p-well and a portion of the drift region. The semiconductor device further comprises a drain contact, and a second electrode extending from the drain contact through the n-well and through the buried oxide layer to the buried n+ region. The second electrode electrically connects the drain contact to the n-well and to the buried n+ region.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: August 30, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tung-Yang Lin, Hsin-Chih Chiang, Ruey-Hsin Liu, Ming-Ta Lei
  • Patent number: 9425352
    Abstract: Disclosed are a semiconductor device, a light emitting device, and a method of manufacturing the same. The semiconductor device includes a substrate, a plurality of rods aligned on the substrate, a metal layer disposed on the substrate between the rods, and a semiconductor layer disposed on and between the rods. Electrical and optical characteristics of the semiconductor device are improved due to the metal layer.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 23, 2016
    Assignee: LG Siltron Inc.
    Inventors: Yong Jin Kim, Dong Kun Lee, Doo Soo Kim
  • Patent number: 9425152
    Abstract: An EMI shielding package structure includes a substrate unit having a first surface with a die mounting area and a second surfaces opposite to the first surface, metallic pillars formed on the first surface, a chip mounted on and electrically connected to the die-mounting area, an encapsulant covering the chip and the first surface while exposing a portion of each of the metallic pillars from the encapsulant, and a shielding film enclosing the encapsulant and electrically connecting to the metallic pillars. A fabrication method of the above structure by two cutting processes is further provided. The first cutting process forms grooves by cutting the encapsulant. After a shielding film is formed in the grooves and electrically connected to the metallic pillars, the complete package structure is formed by the second cutting process, thereby simplifying the fabrication process while overcoming inferior grounding of the shielding film as encountered in prior techniques.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: August 23, 2016
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chin-Tsai Yao, Chien-Ping Huang, Chun-Chi Ke