Patents Examined by Ganapathirama Raghu
  • Patent number: 11905538
    Abstract: Methods for the production of L-glufosinate (also known as phosphinothricin or (S)-2-amino-4-(hydroxy(methyl)phosphonoyl)butanoic acid) are provided. The methods comprise a two-step process. The first step involves the oxidative deamination of D-glufosinate to PPO (2-oxo-4-(hydroxy(methyl)phosphinoyl)butyric acid). The second step involves the specific amination of PPO to L-glufosinate, using an amine group from one or more amine donors. By combining these two reactions, the proportion of L-glufosinate in a mixture of L-glufosinate and D-glufosinate can be substantially increased.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: February 20, 2024
    Assignee: BASF SE
    Inventors: Brian Michael Green, Michelle Lorraine Gradley
  • Patent number: 11905544
    Abstract: Glycerol is a byproduct of biodiesel and bioethanol production and its conversion to value-added chemicals is a promising avenue for realization of the biorefinery concept Conversion of glycerol to pyruvate through glycerate yields pyruvate, is a common intermediate of many high-value natural products. The present invention aims at improving the specific activity of a naturally occurring enzyme toward conversion of glycerate to pyruvate (TvDHT). The present invention features compositions of isolated dehydratase enzyme (DHT) polypeptide composition, in particular the DHT polypeptide composition comprising a single point mutation that increases the specific activity of the enzyme as compared to wild type.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: February 20, 2024
    Assignee: DEBUT BIOTECHNOLOGY, INC.
    Inventors: Joshua Britton, Ali Emileh
  • Patent number: 11891635
    Abstract: A method for modifying double stranded DNA (dsDNA) employing an RNA guided DNA endonuclease to generate two double strand breaks in the dsDNA molecule to be modified, and replacement of the sequence positioned between the double strand breaks with a substitute DNA sequence using the non-homologous end joining (NHEJ) pathway, and corresponding kits and compositions for modifying double stranded DNA molecules.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: February 6, 2024
    Assignee: Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
    Inventors: Ralf Kühn, Eric Danner
  • Patent number: 11884949
    Abstract: A method of producing promorphinan, morphinan, nal-opioid, and nor-opioid alkaloid products through the increased conversion of a promorphinan alkaloid to a morphinan alkaloid. The method comprises contacting the promorphinan alkaloid with at least one enzyme. Contacting the promorphinan alkaloid with the at least one enzyme converts the promorphinan alkaloid to a morphinan alkaloid.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: January 30, 2024
    Assignee: Antheia, Inc.
    Inventors: Christina D. Smolke, Isis Trenchard, Kristy M. Hawkins, Catherine Thodey
  • Patent number: 11884694
    Abstract: Disclosed are steviol glycosides referred to as rebaudioside V and rebaudioside W. Also disclosed are methods for producing rebaudioside M (Reb M), rebausoside G (Reb G), rebaudioside KA (Reb KA), rebaudioside V (Reb V) and rebaudioside (Reb W).
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: January 30, 2024
    Assignee: Conagen Inc.
    Inventors: Guohong Mao, Xiaodan Yu
  • Patent number: 11873520
    Abstract: The present invention provides for novel metabolic pathways to convert biomass and other carbohydrate sources to malonyl-CoA derived products, such as hydrocarbons and other bioproducts, under anaerobic conditions and with the net production of ATP. More specifically, the invention provides for a recombinant microorganism comprising one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to achieve conversion of a carbohydrate source to, e.g., long-chain hydrocarbons and hydrocarbon derivatives, wherein the one or more native and/or heterologous enzymes is activated, upregulated, downregulated, or deleted. The invention also provides for processes to convert biomass to malonyl-CoA derived products which comprise contacting a carbohydrate source with a recombinant microorganism of the invention.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 16, 2024
    Assignee: Lallemand Hungary Liquidity Management LLC
    Inventors: William Ryan Sillers, Shital A. Tripathi, Arthur J. Shaw, IV, Aaron Argyros, David A. Hogsett
  • Patent number: 11866738
    Abstract: Provided herein are compositions and methods for improved production of steviol glycosides in a host cell. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding a Setaria italica UDP-glycosyltransferase 40087 or its variant UDP-glycosyltransferase. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding a UDP-glycosyltransferase sr.UGT_9252778, Bd_UGT10850, and/or Ob_UGT91B1 like. In some embodiments, the host cell further comprises one or more heterologous nucleotide sequence encoding further enzymes of a pathway capable of producing steviol glycosides in the host cell. The compositions and methods described herein provide an efficient route for the heterologous production of steviol glycosides, including but not limited to, rebaudioside D and rebaudioside M.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 9, 2024
    Assignee: AMYRIS, INC.
    Inventors: Lishan Zhao, Wenzong Li, Gale Wichmann, Aditi Khankhoje, Chantal Garcia De Gonzalo, Tina Mahatdejkul-Meadows, Shaina Jackson, Michael Leavell, Darren Platt
  • Patent number: 11866758
    Abstract: Disclosed herein are compositions and methods for preparing tagatose from fructose, more particularly, compositions comprising thermophilic fructose C4-epimerases derived from thermophilic microorganisms and methods for preparing tagatose from fructose using the compositions.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: January 9, 2024
    Assignee: ARZEDA CORP.
    Inventors: Alexandre Zanghellini, Kyle Roberts, Michael Charles Milner Cockrem, Christopher Dunckley
  • Patent number: 11866471
    Abstract: The present invention relates to the provision of a recombinant AIM that maintains functions, does not multimerize, and is not inactivated by IgM (e.g., a protein containing an amino acid sequence wherein cysteine at amino acid number 168 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with another amino acid, and the like).
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: January 9, 2024
    Inventor: Toru Miyazaki
  • Patent number: 11859221
    Abstract: The present invention relates to polypeptide having alpha-amylase activity. The present invention also relates to polynucleotides encoding the polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the polypeptides.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: January 2, 2024
    Assignee: Novozymes A/S
    Inventors: Torsten Bak Regueira, Bitten Plesner, Thomas Holberg Blicher, Anne Dorte Houg, Sofia Arnehed, Lars Lehmann Hylling Christensen, Carsten Andersen
  • Patent number: 11858965
    Abstract: The present disclosure relates to a recombinant protein comprising a plurality of type II cohesin repeats. The present disclosure provides a recombinant cellulosome complex comprising: the recombinant protein comprising a plurality of type II cohesin repeats; a recombinant cellulosome complex integrating protein A comprising a plurality of type I cohesin repeats, a plurality of cellulose-binding modules and a type II dockerin; and a plurality of recombinant enzymes each comprising a type I dockerin. A cell, a method for digesting a cellulose and a method for producing ethanol are also provided.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: January 2, 2024
    Assignee: ACADEMIA SINICA
    Inventors: Wen-Hsiung Li, Anandharaj Marimuthu, Jui-Jen Chang, Yu-Ju Lin, Rizwana Parveen Rani Mohamed Gobil, Chieh-Chen Huang
  • Patent number: 11851639
    Abstract: The present invention relates to compositions comprising protease variants suitable for use in cleaning or detergent compositions, such as laundry detergent compositions and dish wash compositions, including automatic dish wash compositions.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: December 26, 2023
    Assignee: NOVOZYMES A/S
    Inventors: Peter Kamp Hansen, Esben Peter Friis, Torben Vedel Borchert, Lars Lehmann Hylling Christensen, Jens Erik Nielsen, Maria Berggaard Silow
  • Patent number: 11844353
    Abstract: The present application relates to recombinant microorganisms useful in the biosynthesis of unsaturated C6-C24 fatty alcohols, aldehydes, and acetates which may be useful as insect pheromones, fragrances, flavors, and polymer intermediates. The C6-C24 fatty alcohols, aldehydes, and acetates described herein may be used as substrates for metathesis reactions to expand the repertoire of target compounds and pheromones. The application further relates to recombinant microorganisms co-expressing a pheromone pathway and a pathway for the production of a toxic protein, peptide, oligonucleotide, or small molecule suitable for use in an attract-and-kill pest control approach. Also provided are methods of producing unsaturated C6-C24 fatty alcohols, aldehydes, and acetates using the recombinant microorganisms, as well as compositions comprising the recombinant microorganisms and/or optionally one or more of the product alcohols, aldehydes, or acetates.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: December 19, 2023
    Assignee: Provivi, Inc.
    Inventors: Effendi Leonard, Peter Meinhold, Keith Wampler, Pedro Coelho, Micah Sheppard, Thomas Heel
  • Patent number: 11834634
    Abstract: A phosphate-free automatic dishwashing cleaning composition comprising i) a protease wherein the protease is a variant having at least 60% identity with the amino acid sequence of SEQ ID NO:1 and comprising at least one amino acid substitution (using the SEQ ID NO: 1 numbering) selected from the group consisting of X54T; X126A, D, G, V, E, K, I; X127E, S, T, A, P, G, C; and X128E, C, T, D, P, G, L, Y, N; and ii) from 10 to 50% by weight of the composition of a complexing agent system comprising from 0 to less than 30% by weight of the composition of citric acid.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: December 5, 2023
    Assignee: The Procter & Gamble Company
    Inventors: Michelle Jackson, Eva Maria Perez-Prat de Vinuesa, David John Tarbit, Philip Frank Souter, Lilia Maria Babe, David Aaron Estell, Frits Goedegebuur, Harm Jan Mulder, Sina Pricelius, Lydia Dankmeyer, Thijs Kaper, Hatice Billur Engin
  • Patent number: 11820988
    Abstract: Methods and nucleic acid sequences for the synthesis of biotemplates in a non-plant based expression system are provided. Such biotemplates include Barley stripe mosaic virus viral-like particles (BSMV-VLPs) that are capable of self-assembly due to being operatively linked with an origin of self-assembly with the Barley stripe mosaic virus capsid protein (BSMV-CP). Also provided are BSMV-VLPs that are capable of self-assembly due one or more site-directed mutations on the BSMV-CP, and BSMV-VLPs that exhibit enhanced stability due to such site-directed mutation(s).
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 21, 2023
    Assignee: Purdue Research Foundation
    Inventors: Kevin Solomon, Kok Zhi Lee, Yu-Hsuan Lee, Michael Harris, Loretta Sue Loesch-Fries
  • Patent number: 11814659
    Abstract: Described herein are polyhedral, three-dimensional tunable nanocages assembled with a multimeric protein covalently linked to a polynucleotide handle and a DNA origami base assembly including sequences complementary to the polynucleotide handles, wherein the polynucleotide handle and the complementary sequences hybridize to for double-stranded DNA helices.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: November 14, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Nicholas Stephanopoulos, Yang Xu
  • Patent number: 11814656
    Abstract: The present invention related to lipase variants having lipase activity and having between 60% to less than 100% sequence identity to a parent lipase or a fragment thereof, wherein the variant comprises one or more substitutions selected from H198A/D/E/F/G/I/L/N/Q/S/T/V/Y, F7H/K/R, F51A/I/L/V/Y, T143A/G/S/V, A150G/V, N200H/K/Q/R, I202G/LN, S224C/F/H/I/L/P/Y, L227D/E/K/R, V228P, P229H/K/R, V230H/K/L/R, I255A/G/N/P/S/T/V/Y, P256A/K/N/Q/R/S/T/W, A257F/H/I/L/V/Y, L259F/Y, and W260D/E/F/H/I/L/N/Q/S/T/Y using SEQ ID NO:10 for position numbering or selected from H198A/D/E/F/G/I/L/N/Q/S/T/V/Y, F7H/K/R, F51A/I/L/V/Y, T143A/G/S/V, A150G/V, N200H/K/Q/R, I202G/L/V, S224C/F/H/I/L/P/Y, L227D/E/K/R, V228P, P229H/K/R, V230H/K/L/R, I255A/G/N/P/S/T/V/Y, T256A/K/N/Q/R/S/P/W, A257F/H/I/L/V/Y, L259F/Y, and W260D/E/F/H/I/L/N/Q/S/T/Y using SEQ ID NO:2 for position numbering.
    Type: Grant
    Filed: August 2, 2022
    Date of Patent: November 14, 2023
    Assignee: Novozymes A/S
    Inventors: Carsten Hoerslev Hansen, Yitong Liu, Steffen Kayser, Vibeke Skovgaard Nielsen
  • Patent number: 11814658
    Abstract: Methods to edit genes by administering a chimeric nuclease to a cell or organism without the use of a viral vector.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: November 14, 2023
    Assignee: Specific Biologics Inc.
    Inventors: David R. Edgell, Thomas A. McMurrough, Brent E. Stead, Odisho K. Israel
  • Patent number: 11807668
    Abstract: A use of citronellol in preparing a preparation for promoting an expression of a virulence gene toxA of Pseudomonas aeruginosa is disclosed. It was found that citronellol slightly inhibits the growth of a Pseudomonas aeruginosa PAO1 strain and can promote the transcription of the toxA of Pseudomonas aeruginosa, which can increase the yield of an exotoxin A, namely, an encoded product of toxA. Therefore, citronellol is applicable to the preparation of a preparation for promoting the expression of the virulence gene toxA of Pseudomonas aeruginosa.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: November 7, 2023
    Assignee: INSTITUTE OF MICROBIOLOGY, GUANGDONG ACADEMY OF SCIENCES (GUANGDONG DETECTION CENTER OF MICRORI
    Inventors: Wenru Li, Xiaobao Xie, Taohua Zeng, Zhiqing Zhang, Jingxia Liu, Qingshan Shi
  • Patent number: 11795418
    Abstract: The present invention relates to endoglucanase variants and methods for obtaining endoglucanase variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: October 24, 2023
    Assignee: Novozymes A/S
    Inventors: Jens Erik Nielsen, Lars Anderson, Allan Svendsen, Rune Nygaard Monrad, Lars Giger, Vasudeva Prahlada Rao, Sohel Dalal, Santhosh Vasu Mepadam, Marie Thrysoe Kruse, Kasper D. Rand, Pernille F. Jensen