Patents Examined by George Manuel
  • Patent number: 11410768
    Abstract: A system that comprises a memory device storing instructions, and a processing device communicatively coupled to the memory device. The processing device executes the instructions to: receive user data obtained from records associated with a user; generate a modified treatment plan based on the user data; and send, to a treatment apparatus accessible to the user, the modified treatment plan, wherein the modified treatment plan causes the treatment apparatus to update at least one operational aspect of the treatment apparatus, and update at least one operational aspect of at least one other device communicatively coupled to the treatment apparatus.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: August 9, 2022
    Assignee: ROM TECHNOLOGIES, INC.
    Inventors: Steven Mason, Daniel Posnack, Peter Arn, Wendy Para, S. Adam Hacking, Micheal Mueller, Joseph Guaneri, Jonathan Greene
  • Patent number: 11406826
    Abstract: A method for using information of patient-specific cochlea size and/or shape to determine a patient-customized cochlear implant electrode insertion and placement plan includes segmenting shapes of structures of interest (SOIs) of the cochlea in a pre-operative CT image of the cochlea using a shape model; defining a 3D modiolar hugging curve within the shape model of the SOIs as a sequence of points; automatically transforming the defined 3D modiolar hugging curve to the pre-operative CT image so as to obtain a modiolar curve in the cochlea; rigidly registering an EA shape model of the EA to the modiolar curve in the cochlea, thereby placing a resting state shape of the EA within the patient's SOIs such that the EA matches the modiolar curve in the cochlea; and determining a patient-customized insertion plan for electrode placement using the registered EA shape model.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 9, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Jack H. Noble, Robert F. Labadie, Benoit M. Dawant
  • Patent number: 11401622
    Abstract: Provided are composite array electrode, preparation method thereof and use thereof. The composite array electrode comprises a microelectrode array substrate, and a modification layer formed on a surface of a microelectrode of the microelectrode array substrate, wherein the modification layer comprises a plurality of electrically conductive layers arranged at intervals on the surface of the microelectrode, an insulating layer arranged on the surface of the microelectrode except the electrically conductive layers, and wherein material for the electrically conductive layers comprises one or more of nano platinum, nano iridium, conductive polymer and carbon nanotubes. The composite array electrode effectively eliminates the influence of edge effect such that the electric field distributes uniformly on the microelectrode surface of the composite array electrode, significantly improving electrochemical performance and detection capability of the electrode.
    Type: Grant
    Filed: December 15, 2018
    Date of Patent: August 2, 2022
    Assignee: SHENZHEN INSTITUTES OF ADVANCED TECHNOLOGY
    Inventors: Qi Zeng, Tianzhun Wu
  • Patent number: 11399764
    Abstract: A phrenic nerve pacing monitor assembly for a cryogenic balloon catheter system used during a cryoablation procedure, which monitors movement of a diaphragm of a patient, includes a pacing detector and a safety system. The pacing detector directly monitors movement of the diaphragm of the patient to detect when phrenic nerve pacing is occurring. Additionally, the pacing detector generates monitor output based on the movement of the diaphragm of the patient. The safety system receives the monitor output and based at least in part on the monitor output selectively provides an alert when movement of the diaphragm of the patient is atypical. The safety system is configured to provide the alert only while at least one of (i) phrenic nerve pacing is occurring, and (ii) cryoablation is occurring.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: August 2, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Eugene J. Jung, Chadi Harmouche
  • Patent number: 11404150
    Abstract: A computer-implemented system for processing medical claims is disclosed. The computer-implemented system includes a medical device configured to be manipulated by a user while the user performs a treatment plan; a patient interface associated with the medical device, the patient interface comprising an output configured to present telemedicine information associated with a telemedicine session; and a processor. The processor is configured to, during the telemedicine session, receive device-generated information from the medical device; generate a first biometric signature; using the device-generated information, generate a second biometric signature; using the first and second biometric signatures, generate a signature comparison; using the signature comparison, generate a signature indicator; and transmit the signature indicator.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: August 2, 2022
    Assignee: ROM TECHNOLOGIES, INC.
    Inventors: Joseph Guaneri, Daniel Posnack, Peter Arn, Wendy Para, S. Adam Hacking, Micheal Mueller, Jonathan Greene, Steven Mason
  • Patent number: 11395923
    Abstract: The present disclosure relates to branched proximal connectors for high density neural interfaces and methods of microfabricating the branched proximal connectors. Particularly, aspects of the present disclosure are directed to a branched connector that includes a main body having a base portion of a supporting structure and a plurality of conductive traces formed on the base portion, and a plurality of plugs extending from the main body. Each plug of the plurality of plugs include an end portion of the supporting structure comprised of the one or more layers of dielectric material, and a subset of conductive traces from the plurality of conductive traces. Each trace from the subset of conductive traces terminates at a bond pad exposed on a surface of the end portion of the supporting structure.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: July 26, 2022
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Bo Lu, Kedar Shah
  • Patent number: 11389074
    Abstract: A heart beat detection device comprises at least one optical reflection sensor to be positioned on the skin of a person. The sensor unit is provided with a light emitter and a corresponding light receiver which converts the light reflected by the skin into an electric signal and comprises electrically adjustable optical filters connected to the emitter, to the receiver or to both of them in order to select, upon operation, a desired light wavelength and perform processing of the signals thus obtained in order to reinforce the heart beat signal. A system with this device and a detection method are also described.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: July 19, 2022
    Assignee: Empatica Srl
    Inventors: Simone Tognetti, Ivan Cenci, Daniele Resnati, Maurizio Garbarino, Matteo Lai
  • Patent number: 11383088
    Abstract: An example of a system for delivering neurostimulation energy may include a stimulation control circuit to control the delivery of the neurostimulation energy according to each of stimulation test patterns. The stimulation control circuit may include a sensing input configured to receive an electrospinogram (ESG) signal recording electrical activity from the spinal cord, a measurement circuit configured to determine one or more response parameters for each test pattern using the received ESG signal, and a selection circuit configured to select a neurostimulation therapy pattern from the stimulation test patterns based on the response parameter(s) and one or more selection criteria. The electrical activity includes responses to the delivered neurostimulation energy, and the response parameter(s) are each indicative of one or more characteristics of the responses. The selection may include selecting a type of stimulation waveform from multiple types of stimulation waveform in the stimulation test patterns.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: July 12, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Rosana Esteller
  • Patent number: 11369796
    Abstract: The present disclosure provides systems and methods relating to neuromodulation. In particular, the present disclosure provides systems and methods for identifying optimized waveforms for blocking neural conduction. The systems and methods of neuromodulation disclosed herein facilitate the treatment of various diseases associated with pathological neural activity. The optimized waveforms for blocking neural conduction are identified through use of a global optimization algorithm based on predetermined performance criteria. A plurality of waveforms are generated and evaluated for neuronal conduction block using a computational model of extracellular neuronal stimulation, and at least on candidate waveform having an optimized shape capable of blocking neural conduction is identified.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: June 28, 2022
    Assignee: Duke University
    Inventors: Warren Grill, Nikki Pelot, Timothy Hoer
  • Patent number: 11364373
    Abstract: Blood pump assemblies and methods of manufacturing and operating blood pump assemblies are provided. The blood pump assembly includes a pump and an impeller blade rotatably coupled to the pump. The blood pump assembly also includes a pump housing component sized for passage through a body lumen and coupled to the pump. The pump housing component includes a peripheral wall extending about a rotation axis of the impeller blade. The peripheral wall includes an inner peripheral wall surface and an outer peripheral wall surface. The peripheral wall also includes one or more blood exhaust apertures. Each blood exhaust aperture in the one or more blood exhaust apertures is defined by an inner aperture edge and an outer aperture edge. Each inner aperture edge is chamfered between the inner peripheral wall surface and the outer peripheral wall surface.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: June 21, 2022
    Assignee: ABIOMED, INC.
    Inventors: Scott C. Corbett, Zhongwei Qi, Kar Lee
  • Patent number: 11350868
    Abstract: An electrocardiogram information processing method and workstation system. The method includes receiving electrocardiogram data output by multiple devices; performs data analysis on the electrocardiogram data, and generating report data and stores same; receiving a report data query by a user, queries corresponding report data according to a user ID of the user, and generating report result list for display and output; receiving a selection by the user, and obtaining selected report data according to the selection; receiving a report data consultation request input by the user; obtaining a user ID of an associated user corresponding to the user ID according to the report data consultation request, and sending the report data to a user equivalent of the associated user according to the user ID of the associated user; and receiving a consultation result feedback data sent by the user equivalent of the associated user.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: June 7, 2022
    Assignee: Shanghai Lepu CloudMed Co., Ltd
    Inventors: Jun Cao, Chuanyan Hu, Tao Liu, Yan Jiang, Liang Tian, Huili Cao, Chang Liu
  • Patent number: 11348683
    Abstract: A computer-implemented system for processing medical claims is disclosed. The system includes a medical device configured to be manipulated by a user while the user performs a treatment plan; a patient interface associated with the medical device, the patient interface comprising an output configured to present telemedicine information associated with a telemedicine session; and a processor. During the telemedicine session, the processor is configured to receive information from a medical device. Using the device-generated information, the processor is further configured to determine device-based medical coding information. The processor is further configured to transmit the device-based medical coding information to a claim adjudication server.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: May 31, 2022
    Assignee: ROM TECHNOLOGIES, INC.
    Inventors: Joseph Guaneri, Daniel Posnack, Peter Arn, Wendy Para, S. Adam Hacking, Micheal Mueller, Jonathan Greene, Steven Mason
  • Patent number: 11337757
    Abstract: A microwave ablation device including a cable assembly configured to connect a microwave ablation device to an energy source and a feedline in electrical communication with the cable assembly. The microwave ablation device further includes a balun on an outer conductor of the feedline, and a temperature sensor on the balun sensing the temperature of the balun.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: May 24, 2022
    Assignee: Covidien LP
    Inventors: Joseph D. Brannan, Casey M. Ladtkow, Darion R. Peterson, Eric W. Larson, William J. Dickhans, Richard A. Willyard, Jason A. Case
  • Patent number: 11337634
    Abstract: An ambulatory electrocardiography monitor is provided. The monitor includes a housing adapted to couple to a monitoring patch that includes electrocardiographic electrodes; and electronic circuitry provided within the housing. The electronic circuitry includes an electrocardiographic front end circuit; the microcontroller configured to: execute a power up sequence upon the housing coupling to the patch; after the execution of the power-up sequence, retrieve from the monitoring patch an identifier associated with the patch and a password for accessing results of a physiological monitoring conducted using the patch; read samples of the electrocardiographic signals, buffer the samples of the electrocardiographic signals, compress the buffered samples of the electrocardiographic signals, buffer the compressed samples of the electrocardiographic signals, and write-the buffered samples into a memory in association with the password and the identifier; and the memory electrically interfaced with the microcontroller.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: May 24, 2022
    Assignee: BARDY DIAGNOSTICS, INC.
    Inventors: Jason Felix, Ezra M. Dreisbach, Jon Mikalson Bishay, Corey Bailey Williamson, Gust H. Bardy
  • Patent number: 11331491
    Abstract: Systems and methods for optimizing neuromodulation field design for pain therapy are discussed. An exemplary neuromodulation system includes an electrostimulator to stimulate target tissue to induce paresthesia, a data receiver to receive pain data including pain sites experiencing pain, and to receive patient feedback on the induced paresthesia including paresthesia sites experiencing paresthesia. The neuromodulation system includes a processor circuit configured to generate a spatial correspondence indication between the pain sites and the paresthesia sites over one or more dermatomes, determine an anodic weight and a cathodic weight for each of multiple electrode locations using the spatial correspondence indication, and generate a stimulation field definition for neuromodulation pain therapy.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: May 17, 2022
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Jessica Block, Tianhe Zhang, Natalie A. Brill
  • Patent number: 11325005
    Abstract: Systems, methods, and computer-readable mediums for operating an electromechanical device are disclosed. The system includes, in one example, the electromechanical device, a patient portal, and a computing device. The computing device is configured to receive user data relating to a user, and receive treatment data relating to treatment plans and outcomes. The computing device is also configured to generate a prehabilitation plan by using a machine learning model to process the user data and the treatment data. The computing device is further configured to select, for the electromechanical device, an electromechanical device configuration that enables exercises of the prehabilitation plan to be performed by the user such that performance improves an area of the user's body. The computing device is also configured to enable the electromechanical device to implement the electromechanical device configuration.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: May 10, 2022
    Assignee: ROM TECHNOLOGIES, INC.
    Inventors: Steven Mason, Daniel Posnack, Peter Arn, Wendy Para, S. Adam Hacking, Micheal Mueller, Joseph Guaneri, Jonathan Greene
  • Patent number: 11328807
    Abstract: A computer-implemented system comprising a treatment apparatus, a patient interface, and a processing device is disclosed. The processing device is configured to receive treatment data pertaining to the user during the telemedicine session, wherein the treatment data comprises one or more characteristics of the user; determine, via one or more trained machine learning models, at least one respective measure of benefit one or more exercise regimens provide the user, wherein the determining the respective measure of benefit is based on the treatment data; determine, via the one or more trained machine learning models, one or more probabilities of the user complying with the one or more exercise regimens; and transmit the treatment plan to a computing device, wherein the treatment plan is generated based on the one or more probabilities and the respective measure of benefit the one or more exercise regimens provide the user.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: May 10, 2022
    Assignee: ROM Technologies, Inc.
    Inventors: Steven Mason, Daniel Posnack, Peter Arn, Wendy Para, S. Adam Hacking, Micheal Mueller, Joseph Guaneri, Jonathan Greene
  • Patent number: 11324441
    Abstract: An electrocardiography and respiratory monitoring patch is provided. The monitoring patch includes a backing. Electrocardiographic electrodes are affixed to and conductively exposed on a contact surface of the backing to sense electrocardiographic data. A circuit includes circuit traces and each circuit trace is coupled to one of the electrocardiographic electrodes. At least one respiratory sensor is positioned adjacent to the backing to sense respiratory data including SpO2 or respiratory rate.
    Type: Grant
    Filed: July 5, 2021
    Date of Patent: May 10, 2022
    Assignee: Bardy Diagnostics, Inc.
    Inventors: Gust H. Bardy, Jon Mikalson Bishay, Jason Felix
  • Patent number: 11324941
    Abstract: The invention provides an intraventricular pulsating blood pump fixedly disposed at the ventricularapex inside the ventricle to generate pulsation action. The pulsating blood pump is substantially jellyfish-shaped and includes a bell-shaped pump body and a driving source, an opening of the bell-shaped pump body faces to the outlet of the ventricle, the driving source drives the bell-shaped pump body to contract or relax, and the contraction or relaxation of the bell-shaped pump body drives the blood in the ventricle to eject directionally to the artery and form a convoluted blood flow field between the inner wall of the bell-shaped pump body and the inner wall of the ventricle. The invention not only provides assist to ventricular by pulsating blood flow, but also optimizes the flow field and pressure distribution in the ventricle, the blood pump of the invention is better in biocompatibility than the blood pumps in prior art.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: May 10, 2022
    Assignee: magAssist Inc.
    Inventors: Boling Xu, Weiguo Dang, Penghui Huang
  • Patent number: 11318297
    Abstract: A medical lead includes a main body having a length extending from a proximal end to a distal end, a longitudinal axis parallel to the length, and a proximal portion adjacent to the proximal end and a distal portion adjacent to the distal end; a plurality of electrodes defining an electrode region; and an imaging marker positioned between the electrode region and the proximal end and separated from the electrode region by a distance in an axial direction. The imaging marker may include one or more marker segments. The imaging marker may be disposed in a pocket of a sleeve at least partially surrounding the main body and comprising one or more pockets for receiving the imaging marker. The medical lead may be operatively connected to an implantable medical device.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: May 3, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jiashu Li, Patrick Helm, Sean P. Skubitz, Ashutosh Chaturvedi