Abstract: Disclosed herein are methods and compositions for determining an improved estimate of the true fractional abundance of target analytes (e.g., specific polynucleotide sequences) in a sample using a nanopore sensor, e.g., by correcting errors inherent to identifying and correlating electrical signals to amounts of a target analyte or reference analyte in a sample.
Type:
Grant
Filed:
October 24, 2017
Date of Patent:
September 6, 2022
Assignee:
Ontera Inc.
Inventors:
Yanan Zhao, William McKenna, William B. Dunbar
Abstract: Methods, electrodes, and sensors for pH sensing using pseudo-graphite are disclosed. In one illustrative embodiment, a method may include coating a pseudo-graphite material onto a surface of an electrode substrate to produce a pseudo-graphite surface. The method may also include exposing the pseudo-graphite surface to a sample to detect organic content in the sample.
Abstract: A gas sensor system (100) comprising at least one first field effect transistor (200) comprising first source and drain electrodes and at least one second field effect transistor (300) comprising second source and drain electrodes different from the first source and drain electrodes. Different responses of the first and second FETs to gases in an environment may be used to differentiate between the gases, for example to differentiate between 1-methylcyclopropene and ethylene in locations where fruit is stored.
Type:
Grant
Filed:
March 15, 2018
Date of Patent:
August 16, 2022
Assignee:
Sumitomo Chemical Company Limited
Inventors:
Christopher Newsome, Nicholas Dartnell, Simon Goddard
Abstract: Methods, electrodes, and electrochemical devices using nitrogen-doped pseudo-graphite are disclosed. In one illustrative embodiment, a method may include doping a pseudo-graphite material with nitrogen to form a doped pseudo-graphite material. The method may also include applying the doped pseudo-graphite material to a surface of a substrate of an electrode.
Type:
Grant
Filed:
March 5, 2019
Date of Patent:
August 16, 2022
Assignees:
ABB Schweiz AG, University of Idaho
Inventors:
Nolan Nicholas, Ignatius Cheng, Haoyu Zhu, Humayun Kabir, Kailash Hamal, Jeremy May
Abstract: A device for monitoring a cell culture includes one or more electrochemical sensors configured to be positioned adjacent to or embedded within a medium of a cell culture. The one or more electrochemical sensors are configured to generate signals in accordance with the cell culture. A data storage device is configured to receive and store the signals from the one or more electrochemical sensors. A computation device is configured to analyze the signals from the one or more electrochemical sensors to determine cell activity over time using sensitivity information.
Type:
Grant
Filed:
February 3, 2020
Date of Patent:
July 12, 2022
Assignee:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Amos Cahan, Guy M. Cohen, Theodore G. van Kessel, Sufi Zafar
Abstract: An electrochemical device for identifying electroactive analytes. The device includes a substrate; a sample region; a counter electrode; a reference electrode; a working electrode disposed in communication with the substrate, and the working electrode may be an electron conducting fiber. Further, the counter electrode, reference electrode, and working electrode are partially disposed in the sample region configured to be exposed to the electroactive analyte. Further yet, a counter electrode channel, reference electrode channel, and working electrode channel are disposed in the substrate configured to: accommodate each of the counter electrode, reference electrode, and working electrode, respectively, for placement in the respective channels.
Type:
Grant
Filed:
November 10, 2017
Date of Patent:
June 28, 2022
Assignee:
University of Virginia Patent Foundation
Abstract: The present disclosure generally relates to a system for monitoring and/or controlling one or more agents, such as cleaning agents, in a wastewater treatment system. The system comprises a bio-electrochemical sensor for monitoring metabolic activity of a population of exo-electrogenic bacteria and providing an electrical output corresponding with the metabolic activity, where the bio-electrochemical sensor comprises an electrode pair and a power source for delivering a voltage across the electrode pair, and an electrical output analyzer for analyzing the electrical output and correlating the electrical output with the one or more agents in the wastewater treatment system. a change in electrical output beyond a threshold indicates that an adjustment in the delivery of the one or more agents is needed. a method and sensor for monitoring and/or controlling a cleaning process in a wastewater treatment system are also provided.
Type:
Grant
Filed:
November 27, 2017
Date of Patent:
June 7, 2022
Assignee:
SENTRY:WATER MONITORING AND CONTROL INC.
Inventors:
Patrick Desmond Kiely, Monica Cella, Jack Ambler, Rebecca Connolly
Abstract: A method of detecting acetone in a gas sample, comprising, at an operation temperature of 50° C. or less, exposing the gas sample to a gas sensor comprising an electrode and a sensing material deposited on the electrode, wherein the sensing material comprises tungsten bronze, and a level of the acetone in the gas sample is detected by a change in resistivity of the sensing material.
Abstract: Aspects of the present disclosure involve systems, methods, and the like, for an electrochemical sensing platform for point-of-care diagnostic applications. The ES platform may include functionality for many types of ES applications, including but not limited to, voltammetry, galvanometry, amperometry, and electrochemical impedance spectroscopy (EIS). In some embodiments, the platform includes sensor analog front end, stimulus generation, analog sensor data acquisition and conditioning, digital-to-analog conversion, back-end digital signal processing, wired or wireless interface, and a user application for interacting with the platform. In some embodiments, the platform includes a number of functional modules to provide a low cost and high mobility to the device, while maintaining the performance specifications. Signal generation, digital data acquisition/processing may be managed by an on-board microcontroller or off-board computing device.
Type:
Grant
Filed:
February 7, 2018
Date of Patent:
May 31, 2022
Assignee:
Colorado State University Research Foundation
Abstract: Provided are devices and methods for a rapid, non-perturbative and energy-efficient technique for pH sensing based on a flexible graphene electrode. This technique does not require the application of gate voltage or source-drain bias, and demonstrates fast pH-characterization with precision. The disclosed technology is suitable for in vivo monitoring of tumor-induced pH variation in tissues and detection of pH changes as required in a DNA sequencing system.
Type:
Grant
Filed:
March 13, 2017
Date of Patent:
May 10, 2022
Assignee:
The Trustees of the University of Pennsylvania
Abstract: Methods, electrodes, and sensors for pH sensing using pseudo-graphite are disclosed. In one illustrative embodiment, a method may include coating a pseudo-graphite material onto a surface of an electrode substrate to produce a pseudo-graphite surface. The method may also include exposing the pseudo-graphite surface to a sample to measure a pH of the sample.
Abstract: A nanopore measurement circuit includes a first analog memory configured to store a first electrical value corresponding to a first measurement sample of a nanopore and a second analog memory configured to store a second electrical value corresponding to a second measurement sample of the nanopore. The nanopore measurement circuit also includes a measurement circuitry configured to provide an output indicating a difference between the first electrical value of the first analog memory and the second electrical value of the second analog memory.
Type:
Grant
Filed:
April 28, 2020
Date of Patent:
May 3, 2022
Inventors:
Santiago Fernandez-Gomez, Bill Maney, Hui Tian
Abstract: An integrated chemical sensor device includes a chemical sensor comprising at least one transistor and having an external sensing surface electrically coupled to a node of the at least one transistor. There is an initialization circuit connected to the base of the at least one transistor configured to set an operating point for the at least one transistor. There is a temperature sensor control circuit coupled to the chemical sensor circuit. The temperature sensor includes a temperature sensor, an analog-to-digital (A/D) converter coupled to the temperature sensor, and a proportional-to-absolute-temperature (PTAT) circuit configured to generate a PTAT reference voltage for temperature compensation. The temperature sensor control circuit is configured to compensate for a change in temperature of the at least one transistor.
Type:
Grant
Filed:
April 24, 2019
Date of Patent:
April 26, 2022
Assignee:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Abstract: A gas sensor (1) including a sensor element (10) and a separator (90) having an element hole (90 h), as viewed from one of a forward-end or a rear-end side in the axial direction. The separator has end surfaces (90 e) located axially farthest toward the one of the forward-end or the rear-end side, recess regions (90 h), (90 r 1) and (90 r 2) recessed from the end surfaces, and regions R1 and R2. First regions R1 are determined by eliminating a region SB occupied by the sensor element from a region SA defined by imaginary short-side lines and the outer edge of the separator. Second regions R2 are determined by eliminating the region SB from a region SC defined by imaginary long-side lines and the outer edge of the separator. S2/S1?0.5 is satisfied, where S1 is the total area of R1 and R2, and S2 is the total area of the recess regions.
Abstract: A carbon nanotube-based reference electrode and an all-carbon nanotube microelectrode assembly for electrochemical sensing and specialized analytics are disclosed, along with methods of manufacture, and applications including detection of ionic species including heavy metals in municipal and environmental water, monitoring of steel corrosion in steel-reinforced concrete, and analysis of biological fluids.
Type:
Grant
Filed:
June 16, 2017
Date of Patent:
April 19, 2022
Assignee:
University of Cincinnati
Inventors:
Noe Alvarez, Daoli Zhao, I, William Heineman, Vesselin Shanov, David Siebold
Abstract: There is provided a chloride selective membrane including an epoxide-based matrix reacted with a stoichiometric amount of an amino compound and an activator such that the epoxide-based matrix comprising a number of quaternary ammonium groups.
Abstract: A method for measuring a glycated protein in a sample, the method comprising (1) a step of allowing a sample in which a degradation product has been generated from a glycated protein by a protease to react with an oxidoreductase in the presence of an electron mediator to generate a reduced electron mediator; and (2) a step of detecting the reaction state in the step (1) by an electrochemical technique using an interdigitated electrode.
Abstract: A method for concentrating electrically charged objects in a non-Newtonian liquid medium comprises: feeding a sample containing electrically charged objects into a channel having a flow axis, a first transverse cross-section orthogonal to the flow axis, and at least one second transverse cross-section orthogonal to the flow axis, one dimension of the second cross-section being less than the corresponding dimension of the first cross-section; and applying a hydrodynamic flow in a direction of the channel together with the application, in the opposite direction, of an electric field in the channel, thus making it possible to move the electrically charged objects in the channel along the flow axis from the first cross-section to the second cross-section, stop the objects, and concentrate the objects in at least one area upstream from the second transverse cross-section.
Type:
Grant
Filed:
August 3, 2015
Date of Patent:
March 1, 2022
Assignee:
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
Abstract: Devices, systems, and methods of using them are disclosed that position an end of a capillary electrophoresis tube within an internal tapered nozzle region of an inkjet print head or other microfluidic pump. The capillary electrophoresis tube can extend through an inlet of the microfluidic pump and leave space for a sheath liquid to enter the pump and mix with separated analytes eluted from the capillary electrophoresis tube. The small volume of mixed sheath liquid and analyte can then be jetted through the nozzle at a moving surface, either continuously or as discrete droplets. Relative positions on the surface can indicate separation distances of dispensed analytes.
Abstract: The present invention relates to a method for determining size of biomolecules separated in a medium by an electric field using marker molecules of known size, comprising —(101) detecting a plurality of bands and forming a detected marker sequence and a detected unknown sequence based on a separation criterion, —(102) determining band properties for each detected band, —(103) comparing the band properties of the detected bands of the detected marker sequence with known band properties for a plurality of marker molecules forming a known marker sequence and assigning a score to each comparison, said score being based on at least one of relative distance, relative intensity, expected distance and expected intensity between bands, —(104) selecting the comparison with the highest score and associating all or a subset of the detected bands of the detected marker sequence with said plurality of marker molecules of the known marker sequence in accordance with said comparison to determine size of the all or a subset o