Patents Examined by Gurpreet Kaur
  • Patent number: 11105765
    Abstract: A biosensor device includes a substrate plate, a metal conductive layer, a plurality of working electrodes and an insulating layer. The metal conductive layer is disposed over the substrate plate and has an upper surface. The working electrodes are disposed over the upper surface of the metal conductive layer, wherein each of the working electrodes has a top surface and each of the top surfaces is higher than the upper surface of the metal conductive layer. The insulating layer covers the metal conductive layer and surrounds the working electrodes, wherein an upper surface of the insulating layer is located between the top surfaces and the upper surface of the metal conductive layer such that the working electrodes protrude beyond the upper surface of the insulating layer. A method for manufacturing the biosensor device and a method for detecting biological molecules by using the biosensor device are also provided herein.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: August 31, 2021
    Assignee: NEAT BIOTECH, INC.
    Inventors: Chiun-Jye Yuan, Chun-Lung Lien, Paul C.-P. Chao
  • Patent number: 11085897
    Abstract: It is an object to repeatedly use a microchip without complicating the structure of the microchip, as well as not impairing cost and operability. A seal-attached member 26 is disposed facing a microchip 5 held by a chip holding unit 7, and has through holes 64-3 and 64-4 provided at positions corresponding to reservoirs 53-3 and 53-4, respectively, and elastic members 67 that are pressed against the microchip 5 so as to maintain airtightness between the through holes 64-3 and 64-4 and the corresponding reservoirs 53-3 and 53-4. When the inside of a flow path 55 of the microchip 5 is cleaned, a dispensing probe 8 is inserted into the through hole 64-4 while airtightness between the through hole 64-4 and the dispensing probe 8 is maintained. Then, a suction nozzle 22-3 is inserted into the through hole 64-3.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: August 10, 2021
    Assignee: SHIMADZU CORPORATION
    Inventor: Akihiro Arai
  • Patent number: 11078513
    Abstract: The present invention relates to a composition for forming an electrode, an electrochemical sensor comprising the same, and a method for determining an analyte using the electrochemical sensor.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: August 3, 2021
    Assignee: ROCHE DIABETES CARE, INC.
    Inventors: Gregor Ocvirk, Claudia Gaessler-Dietsche
  • Patent number: 11073495
    Abstract: A biosensor includes a plurality of electrodes including a working electrode, and a detection layer containing an enzyme for exchanging electrons with the working electrode, a crosslinking agent and an electrically conductive polymer and having a contact area with the working electrode defined by a predetermined area.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: July 27, 2021
    Assignees: ARKRAY, Inc., Ultizyme International Ltd.
    Inventors: Hisashi Kaneda, Junko Shimazaki
  • Patent number: 11054386
    Abstract: Aspects of the invention are directed to chemical and biological molecule sensing devices, methods of fabricating the chemical sensor devices, and methods of using those devices to detect chemical and biological molecules. The chemical sensor device may comprise a chemically-sensitive vertical slit field effect transistor (VeSFET) with a chemical recognition element attached to a gate structure and/or a channel of the VeSFET. The recognition element may be capable of binding to a chemical of interest such that the binding of the chemical to the recognition element results in a modification of current flow of the VeSFET, resulting in a detectable signal. The chemical sensor device may further comprise an amplifier configured to receive the detectable signal and produce an amplified signal, and an analog-to-digital converter (ADC) configured to receive the amplified signal and to produce a digital signal that represents the amplified signal.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: July 6, 2021
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Richard H. Morrison, Jr., Andrew P. Magyar
  • Patent number: 11041824
    Abstract: A measurement device including: an ion-sensitive element; a reference electrode disposed in a state in which a measurement subject is interposed between the reference electrode and the ion-sensitive element; and a controller configured to: establish a first state at a predetermined interval, the first state being a state in which a current flows at the ion-sensitive element, and establish a second state within each period after the first state has been established and before the first state is next established, the second state being a state in which a potential difference between the ion-sensitive element and the reference electrode is greater than a potential difference between the ion-sensitive element and the reference electrode in the first state.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 22, 2021
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventors: Kenichiro Kusano, Atsuhiko Okada, Hiroaki Sano, Masao Okihara
  • Patent number: 11035824
    Abstract: The invention relates to a closure for an electrochemical reaction vessel, in particular a potentiostat, the closure comprising: a holder for holding electrodes arranged at an inner side of the closure such that, when the closure is attached to a reaction vessel, electrodes held by the holder extend into an interior space of the reaction vessel and into an electrolyte contained in the reaction vessel; and a plurality of contacts arranged at an outer side of the closure for providing electrical contacts with the electrodes.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: June 15, 2021
    Assignee: IKA-Werke GmbH & CO. KG
    Inventors: Phil S. Baran, Evan Horn, Dirk Waldmann
  • Patent number: 11035819
    Abstract: A method for determining a concentration of an analyte in a fluidic sample is described. A sample is applied to a biosensor including an electrochemical cell having electrodes. A predetermined voltage waveform is applied during at least first and second time intervals. At least first and second current values are measured during the first and second time intervals, respectively. A turning point time is determined during the first time interval at which the measured first current values transition from a first to a second profile. The concentration of analyte in the sample is calculated based on determined turning point time and at least one measured current value. In another example, a physical characteristic of the sample is estimated based on measured current values. The concentration is calculated using a first or second model if the estimated physical characteristic of the sample is in a first or second range, respectively.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 15, 2021
    Assignee: LifeScan IP Holdings, LLC
    Inventors: Zuifang Liu, David McColl, Robert Donald, Anna Salgado, Antony Smith
  • Patent number: 11020028
    Abstract: The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: June 1, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Megan E. Little, Katherine T. Wolfe, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Patent number: 10983084
    Abstract: This invention is to provide an electrode device whose manufacturing cost is suppressed and whose surface is difficult to be polluted. The electrode device comprises an internal electrode, an enclosure that houses the internal electrode, an internal solution that is housed in the enclosure and that electrically communicates a liquid junction formed in the enclosure or a response glass that forms a part or all of the enclosure with the internal electrode, and an antifouling mechanism that has a light source to irradiate ultraviolet rays on a sample contact surface of the enclosure as being a surface that makes contact with a sample and that prevents the sample contact surface of the enclosure from being polluted, and the light source is directly or indirectly mounted on an outside of the enclosure, or the light source is housed inside of the enclosure.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: April 20, 2021
    Assignee: HORIBA Advanced Techno, Co., Ltd.
    Inventors: Yuji Nishio, Katsunobu Ehara
  • Patent number: 10962502
    Abstract: A hydrogen detector for gas and fluid media is disclosed. The detector includes a selective membrane and a housing. Within the housing is a potential measuring unit and a ceramic sensing element made of a solid electrolyte. A standard electrode is located within a cavity of the ceramic sensing element and a porous platinum electrode is applied to an external layer of the ceramic sensing element. A potential measuring unit passes through a sealed lead-in at the upper end of the housing and is brought out to the standard electrode. The selective membrane, which is attached to a hole in the end of the lower bushing, is closed with a plug. The cavity limited by the inner surface of the lower bushing, the external part of the bottom of the ceramic sensing element and the inner surfaces of the selective membrane and the plug is leak-tight.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: March 30, 2021
    Assignee: JOINT STOCK COMPANY “AKME-ENGINEERING”
    Inventors: Petr Nikiforovich Martynov, Mi hail Efimovich Chernov, Alexsey Nikolaevich Storozhenko, Vasiliy Mikhaylovich Shelemet'Ev, Roman Petrovich Sadovnichiy
  • Patent number: 10961630
    Abstract: Embodiments of the present disclosure provide devices, systems and methods for monitoring anti-corrosion efforts including the efficacy of cathodic protection systems. Embodiments of the present disclosure provide devices, systems and methods for remote cell cathodic protection (CP) survey data acquisition to sense, display, and record CP survey voltage potential measurements as well as global positioning system and navigation data. Embodiments of the present disclosure provide improvements in terms reduced noise and improved signal quality through the use of copper conductors that connect electrochemical reference cells (i.e., electrodes) to measuring apparatus. Further, improved signal detection is provided by embodiments including reference electrodes that may be placed further (e.g., up to 1000 feet) from a surface vessel than are found in conventional system. Disclosed embodiments also provide highly precise spatial mapping of CP potentials (e.g., to within 0.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: March 30, 2021
    Assignee: DELTA SUBSEA LLC
    Inventor: Scott P. Dingman
  • Patent number: 10942147
    Abstract: A capillary cartridge achieves both improvement of attachability and improvement of heat dissipation performance for realizing short-time analysis. A heat dissipation body is provided between a capillary having a detection unit provided in a part thereof and a plate-like support body that supports the capillary, and temperature increase inside the capillary is suppressed by the heat dissipation body, and thereby, electrophoresis can be performed under a high voltage application condition where the amount of heat increases and analysis time is reduced. In addition, it is possible to redress complexity of an operation by reducing a fixing place at the time of attachment to only a detection unit and an electrode holder by using an integration structure in which the capillary, the supporting body, and the heat radiating body are integrated.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: March 9, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Ayaka Okuno, Motohiro Yamazaki, Taro Nakazawa, Mitsuhiro Miyazaki, Ryusuke Kimura
  • Patent number: 10935511
    Abstract: The present invention relates to systems that utilize a combination of immunoassay and magnetic immunoassay techniques to detect an analyte within an extended range of specified concentrations. In particular, a device includes a first electrochemical sensor positioned within a conduit adjacent to a second electrochemical sensor and spaced apart from one another at a predetermined distance. The first electrochemical sensor includes an immobilized layer of antibodies. The second electrochemical sensor includes a magnetic field disposed locally around the second electrochemical sensor, and the magnetic field is configured to attract magnetic beads onto a surface of the second electrochemical sensor. The device further includes a scavenging electrode positioned between the first electrochemical sensor and the second electrochemical sensor. The scavenging electrode is configured to prevent crosstalk between the first electrochemical immunosensor and the second electrical immunosensor.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: March 2, 2021
    Assignee: Abbott Point of Care Inc.
    Inventors: Antti Leo Oskari Virtanen, Cary James Miller, Kenneth Harold Hardage
  • Patent number: 10935517
    Abstract: A gas sensor element of the present disclosure includes a measurement gas chamber, a solid electrolyte body, and a sensor electrode. The sensor electrode has a noble metal region which contains at least Rh and Pt, an electrolyte region which is formed by a solid electrolyte, and a mixed region in which the noble metal and the solid electrolyte are mixed. With respect to a correlation curve which represents a correlation between a mass percentage concentration c of Rh and a thickness d of the mixed region, when a reaction resistance to a measured gas in the sensor electrode is 40 k?, the concentration c of Rh and the thickness d are set so that at coordinates (c, d), the concentration c has a positive coordinate point and the thickness d has a positive coordinate point.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: March 2, 2021
    Assignee: DENSO CORPORATION
    Inventors: Yusuke Todo, Mitsunobu Nakato, Hiroaki Yoto
  • Patent number: 10928356
    Abstract: A substrate's embedded substrate contact electrode forms a reference voltage point. A gate insulator is spaced outwardly from the substrate and has an exposed outer surface configured for contact with a fluid analyte. A device region is intermediate the substrate and the gate insulator; source and drain regions are adjacent the device region; and a field insulator is spaced outwardly of the drain region, the source region, and the substrate away from the device region. The gate insulator and the field oxide are formed of different materials having different chemical sensitivities to the fluid analyte. The field insulator is coupled to the substrate through the field insulator capacitance. The gate insulator capacitance is much smaller than the field insulator capacitance. The embedded substrate contact electrode can be connected to a separate voltage so that the electrical potential between the substrate and the source region can be controlled.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Paul M. Solomon, Sufi Zafar
  • Patent number: 10921279
    Abstract: In a general aspect, an apparatus can include a substrate and a post disposed on the substrate. The post can include a plurality of nanotubes and extend substantially vertically from the substrate. The post can have an aspect ratio of a height of the post to a diameter of the post of greater than or equal to 25:1.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: February 16, 2021
    Assignee: Brigham Young University
    Inventors: Guohai Chen, Robert C. Davis, Richard Vanfleet
  • Patent number: 10913064
    Abstract: Example methods, apparatus, systems for droplet actuator fabrication are disclosed. An example method disclosed herein for making a droplet actuator includes ablating a first substrate with a laser to form an electrode array on the first substrate. The example method includes applying at least one of hydrophobic or a dielectric material to the electrode array. The example method also includes aligning the first substrate with a second substrate. The second substrate includes a second treated layer. In the example method, the alignment includes a gap between at least a portion of the first treated layer and at least a portion the second treated layer.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: February 9, 2021
    Assignee: Abbott Laboratories
    Inventors: Andrew Fischer, Adrian Petyt, Sophie Laurenson
  • Patent number: 10914696
    Abstract: Provided is a method of suitably judging necessity of a recovering process carried out on a mixed-potential gas sensor based on an extent of reversible deterioration occurring in a sensing electrode. The method includes the steps of: (a) performing impedance measurement between a sensing electrode exposed to a measurement gas and a reference electrode exposed to a reference atmosphere, which are provided in the gas sensor; and (b) judging necessity of a recovering process based on electrode reaction resistance or a diagnosis parameter correlating with the electrode reaction resistance wherein the electrode reaction resistance and the diagnosis parameter are obtained based on a result of the impedance measurement. The two steps are intermittently or periodically repeated during use of the gas sensor, and it is judged that a recovering process is necessary when the judge parameter satisfies a predetermined threshold condition in the step (b).
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: February 9, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Taku Okamoto, Yuki Nakayama, Kosuke Monna, Osamu Nakasone
  • Patent number: 10900929
    Abstract: The invention concerns a device for measuring the pH of an effluent, said device comprising means for measuring an item of information representative of the pH of said effluent intended to be brought into contact with said effluent. According to the invention, such a device further comprises means for modifying the pH value of said effluent close to said means for measuring.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: January 26, 2021
    Assignee: Veolia EAU—Compagnie Generale Des Eaux
    Inventors: Yves De Coulon, Carine Beriet, Cyrille Lemoine