Patents Examined by Helene Bor
  • Patent number: 11567150
    Abstract: The present disclosure provides medical devices having MRI-compatible circuitry. Preferably, the devices do not project an enlarged profile, yet their position can be determined during an iMRI procedure. Illustrative embodiments of such a device can include a base surface, a first conducting layer disposed on the base surface, a first insulating layer disposed over at least a portion of the first conducting layer, and a second conducting layer disposed over at least a portion of the first insulating layer.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: January 31, 2023
    Assignee: Transmural Systems LLC
    Inventors: Ozgur Kocaturk, Nasser Rafiee
  • Patent number: 11547368
    Abstract: In a method and system, a medical imaging modality and the parameters to be deployed for the determined imaging modality are determined to produce an image of an examination object using the determined imaging modality and the determined parameters. Information from the preliminary examination(s) of the examination object can be automatically classified to generate classification results corresponding to interfering influence(s) resulting from the production of the image. The classification results can be analyzed to evaluate the classification results. The medical imaging modality and the parameter(s) is determined, based on the evaluated results, to minimize an influence of the interfering influences of the classification results in image(s) of the examination object generated using the determined medical imaging modality and the determined one or more parameters. The image(s) may then be generated using the determined medical imaging modality and the determined parameter(s).
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: January 10, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Mario Zeller
  • Patent number: 11529075
    Abstract: A data processing method for determining a range of motion of an artificial knee joint which connects a femur and a tibia via a medial ligament and a lateral ligament, wherein at least the femur comprises an implant which forms a medial condyle and a lateral condyle, the method comprising the steps of: acquiring the maximum lengths of the lateral ligament and the medial ligament for a particular flexion angle of the knee joint; calculating a first virtual position between the femur and the tibia in which the lateral condyle of the femoral implant touches the tibia and the medial ligament is stretched to its maximum length; calculating a maximum valgus angle of the range of motion from the first virtual position; calculating a second virtual position between the femur and the tibia in which the medial condyle of the femoral implant touches the tibia and the lateral ligament is stretched to its maximum length; and calculating a maximum varus angle of the range of motion from the second virtual position.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: December 20, 2022
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: Oliver Fleig, Christian Brack, Zohar Leder, Martin Bauer
  • Patent number: 11529115
    Abstract: An ultrasound probe for a puncture needle and an ultrasound diagnostic device using the same are disclosed. The ultrasound probe for the puncture needle transmits ultrasonic waves to a subject from a transducer array which is arranged so as to be tilted at a predetermined array angle of inclination with respect to a subject contact surface, in a direction in which an angle of an ultrasonic wave transmission/reception surface with respect to a puncturing direction of the puncture needle punctured from a puncture position toward the front of the subject contact surface decreases, receives ultrasonic echoes, forms sound ray signals which are tilted to a side of the puncture needle, and generates a B mode image of a deep region of the subject from the sound ray signals.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: December 20, 2022
    Assignee: FUJIFILM Corporation
    Inventor: Atsushi Osawa
  • Patent number: 11478168
    Abstract: A data processing method for determining a range of motion of an artificial knee joint which connects a femur and a tibia via a medial ligament and a lateral ligament, wherein at least the femur comprises an implant which forms a medial condyle and a lateral condyle, the method comprising the steps of: acquiring the maximum lengths of the lateral ligament and the medial ligament for a particular flexion angle of the knee joint; calculating a first virtual position between the femur and the tibia in which the lateral condyle of the femoral implant touches the tibia and the medial ligament is stretched to its maximum length; calculating a maximum valgus angle of the range of motion from the first virtual position; calculating a second virtual position between the femur and the tibia in which the medial condyle of the femoral implant touches the tibia and the lateral ligament is stretched to its maximum length; and calculating a maximum yarns angle of the range of motion from the second virtual position.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: October 25, 2022
    Assignees: Smith & Nephew, Inc., Smith & Nephew Orthopaedics AG, Smith & Nephew Asia Pacific Pte. Limited
    Inventors: Oliver Fleig, Christian Brack, Zohar Leder, Martin Bauer
  • Patent number: 11474171
    Abstract: The present invention is directed to a system and method for performing tissue, preferably bone tissue manipulation. The system and method may include implanting markers on opposite sides of a bone, fractured bone or tissue to facilitate bone or tissue manipulation, preferably in-situ closed fracture reduction. The markers are preferably configured to be detected by one or more devices, such as, for example, a detection device so that the detection device can determine the relative relationship of the markers. The markers may also be capable of transmitting and receiving signals. An image may be captured of the bone or tissue and the attached markers. From the captured image, the orientation of each marker relative to the bone fragment may be determined. Next, the captured image may be manipulated in a virtual or simulated environment until a desired restored orientation has been achieved. The orientation of the markers in the desired restored orientation may then be determined.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: October 18, 2022
    Assignee: DEPUY SYNTHES PRODUCTS, INC.
    Inventors: Robert Frigg, Stuart Weikel, Stefan Schwer, Geoffrey Flexner, Ross Jonathan Hamel
  • Patent number: 11426256
    Abstract: Markers, probes, and related systems and methods are provided for localizing locations within a patient's body, e.g., a lesion within a breast. The marker includes an energy converter e.g., one or more photodiodes, for transforming light energy striking the marker into electrical energy, a storage device coupled to the energy converter for storing the electrical energy, a threshold element that closes a switch when the electrical energy reaches a predetermined threshold to discharge the electrical energy and cause the antenna to transmit a radio frequency (RF) signal. The system includes a probe that transmits light into the patient's body and a processor that correlate the frequency of the RF signals to a distance from the probe to the marker.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: August 30, 2022
    Assignee: Cianna Medical, Inc.
    Inventors: John E. Greene, Nikolai Rulkov
  • Patent number: 11406412
    Abstract: An atherectomy catheter includes an elongate flexible catheter body, an elongate deflectable distal tip coupled to the catheter body at a hinge point, a rotatable cutter near the distal end of the catheter body, and a drive shaft extending within the catheter body and configured to rotate the cutter. The atherectomy catheter further includes an optical fiber extending through the drive shaft substantially on-axis with the catheter body and attached to the cutter. The optical fiber is configured to rotate with the drive shaft. The atherectomy catheter further includes a wedge configured to deflect the distal tip away from the catheter body at the hinge point upon axial movement of the drive shaft.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 9, 2022
    Assignee: Avinger, Inc.
    Inventors: Priyanshu Gupta, Michael Zung, Charles W. McNall, Himanshu N. Patel, Christina Van
  • Patent number: 11395601
    Abstract: According to one embodiment, a medical image processing apparatus includes an acquiring unit, an identifying unit, and a display controller. The acquiring unit acquires volume data indicating the state of a three-dimensional region including a mass portion and a plurality of blood vessels derived from the mass portion in a subject. The identifying unit specifies a region corresponding to the mass portion and the blood vessels in the volume data as a region of interest. The identifying unit identifies the mass portion and each of the blood vessels in the region of interest. The display controller assigns a different display mode to at least one of the mass portion and the blood vessels.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: July 26, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventor: Satoru Ohishi
  • Patent number: 11389133
    Abstract: Provided are a method and a ultrasound imaging apparatus for managing growth of follicles in an ovary where the method comprises detecting, by a signal processor, the follicles and a plurality of parameters associated with each follicle in a three dimensional (3D) ultra sound image, tracking the detected follicles in a longitudinal scan, monitoring a rate of growth of each follicle based on the detected parameters in the longitudinal scan, determining a dosage of hormone for stimulating the ovary based on the rate of growth of each follicle, and generating a report and a nomograph based on the rate of growth of each follicle.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: July 19, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Nikhil Narayan Subbarao, Srinivasan Sivanandan, Kedar Anil Patwardhan, Srinivas Rao Kudavelly
  • Patent number: 11375914
    Abstract: A method for producing an image representative of the vasculature of a subject using a MRI system includes the acquisition of a signal indicative of a subject' cardiac phase. During each heartbeat of the subject, image slices of a volume covering a region of interest (ROI) within the subject are acquired by applying a volume-selective venous suppression pulse to suppress (a) venous signal for an upper slice in the ROI; (b) venous signal for slices that are upstream for venous flow in the ROI; and (c) background signal from the upstream slices. Next, a slice-selective background suppression pulse is applied to suppress background signal of the upper slice. Following a quiescent time interval, a spectrally selective fat suppression pulse is applied to the entire volume to attenuate signal from background fat signal. Then, a simultaneous multi-slice acquisition of the upper slice and the upstream slices is performed.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: July 5, 2022
    Assignees: Siemens Healthcare GmbH, NorthShore University Healthsystem
    Inventors: Shivraman Giri, Robert R. Edelman, Ioannis Koktzoglou, Himanshu Bhat
  • Patent number: 11328185
    Abstract: A system and method for performing speckle correlation flow cytometry (SCFC). By subtracting out the stationary background when shining light through a sample (e.g., a vessel within a biological tissue), light only scattered by the desired targets (e.g., cells) can be captured and different types of targets (e.g., cells) can be distinguished by the autocorrelation of the speckle pattern. In this way, the targets (e.g., cells) can be classified and counted based on the features of their speckle correlations. The technique can be applied not only for noninvasive, label-free, in vivo CTC counting but also for counting other types of blood cells such as white blood cells or red blood cells.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: May 10, 2022
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Edward H. Zhou, Michelle Cua
  • Patent number: 11317896
    Abstract: An ultrasound diagnosis apparatus includes a calculating unit, an obtaining unit, a determining unit, and a controlling unit. By using a plurality of pieces of three-dimensional ultrasound image data in a time series corresponding to a three-dimensional region including a myocardium of a subject, the calculating unit calculates first movement information indicating a movement of the myocardium by tracking a movement of a region of interest that corresponds to the myocardium and that is set in each of the plurality of pieces of three-dimensional image data. The obtaining unit obtains direction information indicating a direction of a myocardial fiber in the myocardium. The determining unit determines second movement information indicating a movement of the myocardium with respect to the direction of the myocardial fiber, on the basis of the first movement information and the direction information. The controlling unit causes a display unit to display the second movement information.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: May 3, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Yasuhiko Abe, Tetsuya Kawagishi
  • Patent number: 11304603
    Abstract: Catheterization is carried out by inserting a probe having a location sensor into a body cavity, and in response to multiple location measurements identifying respective mapped regions of the body cavity. Using the location measurements, a simulated 3-dimensional surface of the body cavity is constructed. One or more unmapped regions are delineated by rotating the simulated 3-dimensional surface about an axis. The simulated 3-dimensional surface of the body cavity is configured to indicate locations of the unmapped regions based on the location measurements.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: April 19, 2022
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventor: Vadim Gliner
  • Patent number: 11291508
    Abstract: Systems and methods that use computer vision techniques in connection with robotic surgery are discussed. A robotic surgery system may include an implantable device engagement sub-system, a targeting sub-system, and/or an insertion verification sub-system. The system may use computer vision techniques to facilitate implanting a micro-manufactured bio-compatible electrode device in biological tissue (e.g., neurological tissue such as the brain) using robotic assemblies. The system can attach, via robotic manipulation, the electrode to an engagement element of an insertion needle.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: April 5, 2022
    Assignee: NEURALINK, CORP.
    Inventors: Ian M. O'Hara, Vikash Gilja, Kenny Sharma, Timothy L. Hanson, Timothy J. Gardner
  • Patent number: 11284910
    Abstract: A therapeutic ultrasound system transmits a staggered or interleaved pattern of therapy beams for use in sonothrombolysis and other Vascular Acoustic Resonators (VAR) mediated therapy. The inventive technique minimizes VAR, e.g. microbubble, destruction due to adjacent beams, ensures uniform sonication of the targeted region by filling in the spaces between the beams in subsequent passes, and further provides a means for bubble replenishment to maximize the clot lysis from ultrasound. The technique is also applicable to diagnostic ultrasound, VAR mediated drug delivery and blood brain barrier opening.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: March 29, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Scott William Dianis, Jeffry Earl Powers, Ralf Seip, William Tao Shi, Yannick Bohren, Emmanuel Jean-Marie Gaud, Jean-Marc Paul Robert Hyvelin
  • Patent number: 11278370
    Abstract: A method of operating a marking device includes defining an initial condition wherein a cannula is in an extended position and a stylet is in a ready position in the extended cannula, and, starting from the initial condition with the cannula in the extended position, sequentially: effecting movement of the stylet from a ready position to an implant position, ejecting an imaging marker through a distal opening in a cannula distal end of the cannula, and then; effecting a simultaneous unitary retraction of the cannula and stylet after ejection of the imaging marker from the distal opening in the cannula distal end.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: March 22, 2022
    Assignee: BARD PERIPHERAL VASCULAR, INC.
    Inventors: Steven E. Field, Ryan L. Goosen, Richard E. Davis, Richard M. Chesbrough
  • Patent number: 11259778
    Abstract: A catheter system includes a catheter. The catheter includes a catheter tip and an ultrasound assembly at least partially positioned within the catheter tip. The ultrasound assembly includes a first optical fiber coupled to an optical-to-ultrasound transducer and a second optical fiber coupled to an ultrasound-to-optical transducer. The optical-to-ultrasound transducer is configured to generate an ultrasound signal in response to a pulsed optical signal. The ultrasound-to-optical transducer is configured to generate an optical signal in response to a received ultrasound signal.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: March 1, 2022
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Aiden Flanagan, Daniel J. Foster
  • Patent number: 11253223
    Abstract: A method of non-invasively monitoring the respiration of a patient comprises: transmitting ultrasound into the body toward an internal structure of the patient's body, the internal structure being one of the liver, the spleen or a kidney; selecting a depth range; measuring the phase of ultrasound echo signals from the internal structure at multiple points along the depth range for at least a first and a second echo signal, the first and second echo signals being received at different times; detecting the motion of the internal structure within the patient's abdomen by reference to differences in the measured phase between the first and the second echo signals; and thereby monitoring the respiration of the patient by associating movement of the internal structure with movement caused by respiration.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 22, 2022
    Assignee: Respinor AS
    Inventors: Nicolas Souzy, Morten Eriksen, Nicolay Berard-Andersen
  • Patent number: 11243285
    Abstract: A method is for performing an angiographic measurement of a main measurement region of a patient via a magnetic resonance system.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: February 8, 2022
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventor: Miriam Keil