Abstract: Methods for enhancing phytase thermal stability by fusing binding elements to target phytases are provided. Engineered phytases that include binding elements fused to target phytases to cause cyclization of the engineered phytases and enhance thermal stability of the target phytases are described. Engineered nucleic acids encoding engineered phytases and hosts engineered to express engineered nucleic acids are also provided. Methods for incorporating engineered phytases in animal feed and animal feed including the same are described.
Type:
Grant
Filed:
December 14, 2021
Date of Patent:
November 7, 2023
Assignee:
AGRIVIDA, INC.
Inventors:
R. Michael Raab, Gabor Lazar, Binzhang Shen
Abstract: The present disclosure relates to carbohydrate-functionalized nanoparticles and methods of treating cardiovascular disease (for example, atherosclerosis).
Type:
Grant
Filed:
October 27, 2017
Date of Patent:
October 31, 2023
Assignee:
Virginia Commonwealth University Intellectual Property Foundation
Inventors:
Hu Yang, Shobha Ghosh, Hongliang He, Michael Lancina
Abstract: A microorganism useful as an expression host for ?-Glu-Val synthetase and a method for producing ?-Glu-Val-Gly using ?-Glu-Val synthetase expressed in the microorganism are provided. By using ?-Glu-Val synthetase expressed in a bacterium, such as Escherichia bacteria, modified so that the activity of a protein encoded by a ybdK gene (YBDIQ is reduced as an expression host, ?-Glu-Val-Gly is produced (Yom Glu, Val, and Gly as raw materials.
Abstract: The properties of certain glycosyltransferase variants having N-terminal truncation deletions or internal deletions are disclosed. Particularly, mutants that exhibit ?-2,6-sialyltransferase enzymatic activity in the presence of CMP-activated sialic acid as co-substrate, and in the presence of a suitable acceptor site, are disclosed. A fundamental finding documented in the present disclosure is that enzymes are not only capable of catalyzing transfer of a sialidyl moiety but they are also capable of catalyzing hydrolytic cleavage of terminally bound sialic acid from a glycan.
Type:
Grant
Filed:
June 23, 2021
Date of Patent:
October 17, 2023
Assignee:
Roche Diagnostics Operations, Inc.
Inventors:
Harald Sobek, Michael Greif, Marco Thomann, Sebastian Malik
Abstract: The present invention relates to isolated polypeptides having alpha-amylase activity, catalytic domains, carbohydrate binding domains and polynucleotides encoding the polypeptides, catalytic domains or carbohydrate binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or carbohydrate binding domains.
Abstract: Provided microorganisms genetically modified to overexpress an imine/enamine deaminase to enhance the production of lysine and lysine derivatives by the microorganism. Also provided a method of generating such microorganism, and methods of producing lysine and lysine derivatives using the genetically modified microorganisms.
Abstract: A process of recovering oil, comprising (a) converting a starch-containing material into dextrins with an alpha-amylase; (b) saccharifying the dextrins using a carbohydrate source generating enzyme to form a sugar; (c) fermenting the sugar in a fermentation medium into a fermentation product using a fermenting organism; (d) recovering the fermentation product to form a whole stillage; (e) separating the whole stillage into thin stillage and wet cake; (e?) optionally concentrating the thin stillage into syrup; (f) recovering oil from the thin stillage and/or optionally the syrup, wherein a phospholipase is present and/or added during steps (a) to (c). Use of phospholipase for increasing oil recovery yields from thin stillage and/or syrup in a fermentation product production process.
Type:
Grant
Filed:
December 16, 2016
Date of Patent:
October 10, 2023
Assignee:
NOVOZYMES A/S
Inventors:
Michael John Akerman, Nathaniel Edward Kreel, Melissa Carrie Hooss, Xinyu Shen
Abstract: The present invention relates to methods of releasing galactose from legumes using polypeptides having alpha-galactosidase activity. The invention also relates to polypeptides having alpha-galactosidase activity, polynucleotides encoding the polypeptides, nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing the polypeptides. The invention also relates to compositions comprising the polypeptides of the invention and the use of the polypeptides in animal feed.
Type:
Grant
Filed:
June 7, 2021
Date of Patent:
September 12, 2023
Assignee:
Novozymes A/S
Inventors:
Lone Carstensen, Nikolaj Spodsberg, Morten Gjermansen, Jesper Salomon, Kristian Bertel Roemer M. Krogh, Eduardo Antonio Della Pia
Abstract: The present invention relates to polypeptides having mannanase activity, catalytic domains, and carbohydrate binding modules, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding modules. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding modules.
Abstract: This invention relates to a method of in-situ remediation of arsenic-contaminated soil, comprising the following steps: inoculating a bacterial strain, Pseudomonas putida MnB1 in a culture medium where an addition amount of the bacterial strain accounts for 2-10% (v/v) of the culture medium; shaking the culture medium with the bacterial strain at a rotation speed of 100-180 rpm at 15-35° C. for 1-5 days under an aerobic condition, thereby yielding an enriched bacterial strain; and adding manganese carbonate, ammonium ferrous sulfate, sodium citrate, a yeast extract and the enriched bacterial strain to arsenic contaminated soil; adding water to the soil until the soil has a moisture content of 50-70%, stirring the soil for 5-30 minutes, and culturing the bacterial strain in the soil under an aerobic/microaerobic condition at 10-40° C. for 2-6 weeks.
Type:
Grant
Filed:
January 8, 2020
Date of Patent:
August 29, 2023
Assignee:
Qingdao University of Technology
Inventors:
Huawei Wang, Zijuan Lv, Yanan Wang, Yingjie Sun
Abstract: Provided are soluble neutral active Hyaluronidase Glycoproteins (sHASEGP's), methods of manufacture, and their use to facilitate administration for in vitro fertilization, as well as administration of molecules, or to alleviate glycosaminoglycan associated pathologies. Minimally active polypeptide domains of the soluble, neutral active sHASEGP domains are described that include asparagine-linked sugar moieties required for a functional neutral active hyaluronidase domain. Included are modified amino-terminal leader peptides that enhance secretion of sHASEGP. Sialated and pegylated forms of the sHASEGPs also are provided. Methods of treatment by administering sHASEGPs and modified forms thereof also are provided.
Type:
Grant
Filed:
October 2, 2020
Date of Patent:
August 15, 2023
Assignee:
Halozyme, Inc.
Inventors:
Louis H. Bookbinder, Anirban Kundu, Gregory I. Frost
Abstract: The present invention relates to a recombinant microorganism comprising one or more nucleotide sequence(s) encoding: a polypeptide having ent-copalyl pyrophosphate synthase activity; a polypeptide having ent-Kaurene synthase activity; a polypeptide having ent-Kaurene oxidase activity; and a polypeptide having kaurenoic acid 13-hydroxylase activity, whereby expression of the nucleotide sequence(s) confer(s) on the microorganism the ability to produce at least steviol.
Abstract: The present disclosure provides nucleic acid expression cassettes, vectors, compositions and methods for the treatment of ATPase-mediated diseases in a subject.
Abstract: The presently disclosed subject matter provides a process for starch liquefaction using at least two classes of ?-amylase enzymes, wherein the starch hydrolysis pattern from at least two of these classes is different. At least one class of enzyme is provided to the liquefaction process in the form of transgenic plant material expressing at least one class of ?-amylase enzyme or is provided in the form of a purified or partially-purified ?-amylase enzyme preparation. The second or subsequent class(es) of ?-amylase enzymes may be provided in the form of additional transgenic plant material expressing the second or subsequent class(es), or may be provided in the form of a second or subsequent purified or partially-purified ?-amylase enzyme preparation.
Abstract: The present invention provides for a fungus, especially in the form of fungal mycelium, that has altered glycogen synthase kinase-3 (GSK-3) expression and/or activity level and therefore exhibits modified characteristics in fruiting body development. Also provided are compositions and methods for generating living fungal mycelium with altered fruiting body development.
Type:
Grant
Filed:
September 20, 2018
Date of Patent:
June 6, 2023
Assignee:
The Chinese University of Hong Kong
Inventors:
Jinhui Chang, Hoi Shan Kwan, Man Chun Wong, Po Lam Chan, Yichun Xie, Wing Chee Beatrice Ho
Abstract: A method designed to clarify the coffee oil contained in coffee grounds or in whole and/or damaged coffee beans. The method objective is achieved by starting with inoculation of the coffee grounds or coffee beans with macromycetes especially with white rot fungi, continuing with an incubation, step that allows complete population of the coffee grounds or coffee beans by the fungal mycelium to be achieved, and finishing with steps of drying and extracting the coffee oil. The method disclosed allows colourless or pale yellow coffee oil to be produced, favouring the use thereof in cosmetic and food products, amongst others.
Abstract: An object of the present invention is to provide a method for eliminating the hydroxyl group at the 8-position of a urolithin to produce another kind of urolithin, and this object is achieved by a method for producing a second urolithin, comprising allowing, in a solution containing a first urolithin, a microorganism having an ability to produce the second urolithin from the first urolithin.
Abstract: This invention provides compositions that include a protein and at least two protease inhibitors, method for treating diabetes mellitus, and methods for administering same, and methods for oral administration of a protein with an enzymatic activity, including orally administering same.
Abstract: Systems, methods, and host cells utilizing a PopQC construct for enhancing product biosynthesis by exploitation of non-genetic cell-to-cell variation are disclosed. The PopQC construct includes at least a product-responsive biosensor and a selection gene.