Patents Examined by Hugh Maupin
  • Patent number: 11977192
    Abstract: In one embodiment, a charged-particle trajectory measurement apparatus for measuring a trajectory of a cosmic ray muon as a charged particle includes: a plurality of detectors, each of which generates a detection signal at the time of detecting a cosmic ray muon; a signal processing circuit that processes the detection signal from the detector; a time calculator that calculates the generation time point of the detection signal from the detector on the basis of the signal outputted from the signal processing circuit; a trajectory calculator that calculates the trajectory of the cosmic ray muon on the basis of the generation time point of the detection signal and the positional information of the detector having detected the cosmic ray muon, wherein the signal processing circuit and each of the detectors are integrally configured by being coupled to each other.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: May 7, 2024
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Naoto Kume, Haruo Miyadera, Takuro Fujimaki, Tsukasa Sugita, Yuki Nakai, Masataka Suga, Kohei Nobe
  • Patent number: 11977191
    Abstract: Disclosed herein is a radiation detector comprising: an electronics layer comprising a first set of electric contacts and a second set of electric contacts; a radiation absorption layer configured to absorb radiation; a first set of electrodes and a second set of electrodes, wherein the first set of electrodes and the second set of electrodes are interdigitated and extend into the radiation absorption layer in a direction of thickness thereof; wherein the electronics layer and the radiation absorption layer are bonded such that the first set of electrodes are electrically connected to the first set of electric contacts and the second set of electrodes are electrically connected to the second set of electric contacts.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: May 7, 2024
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Peiyan Cao, Yurun Liu
  • Patent number: 11964167
    Abstract: An emission enhancement structure having at least one energy augmentation structure; and an energy converter capable of receiving energy from an energy source, converting the energy and emitting therefrom a light of a different energy than the received energy. The energy converter is disposed in a vicinity of the at least one energy augmentation structure such that the emitted light is emitted with an intensity larger than if the converter were remote from the at least one energy augmentation structure. Also described are various uses for the energy emitters, energy augmentation structures and energy collectors in a wide array of fields, such as color enhancement, and color enhancement structures containing the same.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: April 23, 2024
    Assignee: IMMUNOLIGHT, LLC
    Inventors: Frederic A. Bourke, Jr., Harold Walder, Zakaryae Fathi, Wayne F. Beyer, Ronald A. Rudder, Joseph H. Simmons
  • Patent number: 11965827
    Abstract: A hyperspectral imaging method includes: providing time-domain synchronous mid-infrared ultrashort pulse and near-infrared ultrashort pulse as pump light and signal light, respectively; subjecting the signal light to optical time-stretching to broaden a pulse width of the signal light; directing the time-stretched signal light to a target sample to be detected; directing the pump light to a time delayer to adjust the time when the pump light reaches a silicon-based camera; spatially combining the time-stretched signal light from the target sample with the pump light from the time delayer; directing combined light to a silicon-based camera where the signal light is detected through non-degenerate two-photon absorption of the signal light under the action of the pump light to acquire hyperspectral imaging data; and obtaining an image of the target sample based on the hyperspectral imaging data.
    Type: Grant
    Filed: September 28, 2022
    Date of Patent: April 23, 2024
    Assignees: CHONGQING INSTITUTE OF EAST CHINA NORMAL UNIVERSITY, EAST CHINA NORMAL UNIVERSITY, YUNNAN HUAPU QUANTUM MATERIAL CO., LTD, ROI OPTOELECTRONICS TECHNOLOGY CO, LTD., CHONGQING HUAPU NEW ENERGY CO., LTD., CHONGQING HUAPU INFORMATION TECHNOLOGY CO., LTD., NANJING ROI OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Heping Zeng, Jianan Fang, Kun Huang, Mengyun Hu
  • Patent number: 11966005
    Abstract: A telemetry system is disclosed for use in a wellbore extending from the surface. The telemetry system includes fiber optic cable locatable in the wellbore, the fiber optic cable including at least one optical fiber. The telemetry system also includes a telemetry device operable to transmit an optical telemetry signal over the fiber optic cable. An optical detector operably connected to the optical fiber and includes a single-photon detector operable to receive the optical telemetry signal transmitted over the optical fiber.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 23, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Daniel J. Stark, John L. Maida, Jr., Li Gao
  • Patent number: 11965776
    Abstract: A method for quantifying an exposure dose for a surface is disclosed. The method may include emitting one or more beams of 222 nm light onto a portion of the surface using one or more far ultraviolet (UV) light sources capable of emitting 222 nm light, the portion of the surface being coated with one or more fluorescent coatings. The method may include capturing images of the portion of the surface. The method may include adjusting one or more image characteristics for the captured images using one or more filtering methods. The method may include generating a histogram of the adjusted images based on the one or more filtering methods. The method may include determining a pixel surface area for the generated histogram. The method may include calculating the exposure dose for the surface based on the generated pixel surface area and a predetermined calibration curve.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: April 23, 2024
    Assignee: B/E AEROSPACE, INC.
    Inventors: Thomas Martz, John D. Edquist, David C. McConnell, Steven Poteet, Katherine Urena Pimentel
  • Patent number: 11957494
    Abstract: The present invention relates to a method for preparing an X-ray image, which can be carried out by an X-ray machine, of at least one surface and/or volume area of at least one part of at least one head of at least one patient. The invention also relates to a corresponding device for data processing, a corresponding computer program product, a corresponding medium and a corresponding X-ray machine. The invention also relates to a method for taking an X-ray image which can be carried out by an X-ray machine of at least one surface and/or volume area of at least one part of at least one head of at least one patient.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: April 16, 2024
    Assignee: DENTSPLY SIRONA INC.
    Inventor: Ulrich Schulze-Ganzlin
  • Patent number: 11959953
    Abstract: A device is suitable for revealing spatial variations in polarization of an electromagnetic radiation, in a form of localized temperature variations. The device includes a surface of a carrier which is electrically and thermally insulating, and includes an array of patterns which each consist of at least one rectilinear segment of a sensitive material, of which the orientation is variable within each pattern or between neighboring patterns. Such device may be used with a thermal camera to reveal, in infrared images, temperature variations which are localized at segments not perpendicular to a local direction of linear polarization of the radiation.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: April 16, 2024
    Assignees: OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AÉROSPATIALES, CENTRE NATIONAL D'ETUDES SPATIALES C N E S, UNIVERSITE TOULOUSE III—PAUL SABATIER, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS
    Inventors: Daniel Prost, Maxime Romier, Daniel Belot, Patrice Simon, Kévin Brousse, Pierre-Louis Taberna
  • Patent number: 11953441
    Abstract: The disclosure provides an optical probe comprising an optical waveguide attached to a molecular switch that produces an altered optical signal upon binding a target molecule. The disclosure also provides an optical sensor system comprising an optical probe, a light source configured to emit the excitation light to be coupled into the optical waveguide of the optical probe; and a detector.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: April 9, 2024
    Assignees: CZ Biohub SF, LLC, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Amani Hariri, Constantin Dory, Alyssa Cartwright, Jelena Vuckovic, Hyongsok Tom Soh
  • Patent number: 11950944
    Abstract: Compact x-ray devices, systems, and methods for capturing in tomosynthesis, two-dimensional radiography, fluoroscopy, and stereotactic imaging modes. In some embodiments, the compact x-ray imaging system includes an x-ray source array including spatially distributed x-ray focal spots and a digital area x-ray detector. In some embodiments, the imaging system includes an electronic switching device configured to alternate the imaging mode of the system. In some embodiments, the imaging system includes a mechanical support configured to enable a position and orientation of the x-ray source array and the digital area x-ray detector to be adjusted such that both upper and lower extremities of a patient can be imaged using various imaging modes while a position of the plurality of spatially distributed x-ray focal spots with respect to the digital area x-ray detector remains unchanged.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: April 9, 2024
    Assignee: THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
    Inventors: Otto Z. Zhou, Jianping Lu, Yueh Zenas Lee, Christina Inscoe, Alex Billingsley
  • Patent number: 11947055
    Abstract: Disclosed herein is a pixelated x-ray scintillator with a multilayer reflector for x-ray detectors with simultaneous high spatial resolution and high quantum efficiency and fabrication method to produce the pixelated x-ray scintillator. The multilayer reflector provides high reflectivity for the emitted visible photons over a broad incident angle range, thus boosts the light output efficiency of the pixelated x-ray scintillator. The fabrication process to produce the pixelated scintillator with the multilayer reflector in this disclosure is compatible with standard semiconductor fabrication instrument and suitable for mass production.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: April 2, 2024
    Inventor: Houxun Miao
  • Patent number: 11947056
    Abstract: A pixelated X-ray conversion screen includes a metal aperture sheet having a pixel hole filled with a scintillator material, wherein an area of the pixel hole is equal to or less than about 0.25 mm2.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: April 2, 2024
    Assignee: TRIAD NATIONAL SECURITY, LLC
    Inventors: Brenden W. Wiggins, Markus Peter Hehlen, James F. Hunter
  • Patent number: 11947052
    Abstract: Examples of the present disclosure relate to a particle beam dose profile measurement apparatus comprising a particle detector stack comprising a plurality of scintillator layers. Each scintillator layer of the detector stack is disposed along an axis of the apparatus such that the axis projects through each layer. Each scintillator layer is configured to produce scintillation light indicative of an energy deposition, in that scintillator, of a particle beam incident upon the detector stack along said axis. The apparatus comprises readout circuitry configured to measure the scintillation light of each scintillator layer; and dose profile determination circuitry configured to determine a dose profile of said particle beam within the detector stack. Said determining is based on the measured scintillation light of each scintillator layer, and a quenching correction.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: April 2, 2024
    Assignee: UCL Business Ltd.
    Inventors: Simon Jolly, Raffaella Radogna, Laurent Kelleter
  • Patent number: 11939504
    Abstract: The present invention aims to provide a scintillator which has a short fluorescence decay time, whose fluorescence intensity after a period of time following radiation irradiation is low, and which shows largely improved light-transmittance. A scintillator represented by the following General Formula (1), the scintillator including Zr, having a Zr content of not less than 1500 ppm by mass therein, and being a block of a sintered body. QxMyO3z:A . . . (1) (wherein in General Formula (1), Q includes at least one or more kinds of divalent metallic elements; M includes at least Hf; and x, y, and z independently satisfy 0.5?x?1.5, 0.5?y?1.5, and 0.7?z?1.5, respectively).
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: March 26, 2024
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Koji Hazu, Kentaro Horibe, Tetsuya Kawano, Keiji Yamahara, Shunsuke Kurosawa, Akira Yoshikawa
  • Patent number: 11941850
    Abstract: Disclosed herein is an image sensor with two radiation detectors, each having a planar surface for receiving radiation; and a calibration pattern. The planar surfaces of the radiation detectors are not coplanar. The image sensor can capture images of two portions of the calibration pattern, respectively using the radiation detectors. The image sensor can determine two transformations for the radiation detectors based on the images of the portions of the calibration pattern, respectively. The image sensor can capture images of two portions of a scene, respectively using the radiation detectors, determine projections of the images of the portions of the scene onto an image plane using the transformations, respectively, and form an image of the scene by stitching the projections.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: March 26, 2024
    Assignee: SHENZHEN XPECTVISION TECHNOLOGY CO., LTD.
    Inventors: Yurun Liu, Peiyan Cao
  • Patent number: 11927532
    Abstract: A component analysis device includes a data acquisition circuit that acquires spectral data of an analyte containing components, the spectral data being obtained by measuring a spectrum of the analyte with a sensor, a type acquisition circuit that acquires information indicating a type of the analyte, a storage that stores a reference spectral data set including multiple spectral data of substances each of which is estimated to be included in the analyte, the reference spectral data set corresponding to the type of the analyte, and an analysis circuit that performs a parallel factor analysis by using, as input data, the spectral data of the analyte and the reference spectral data set.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: March 12, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Mariko Miyashita, Tatsushi Ohyama
  • Patent number: 11918403
    Abstract: System and method are disclosed for imaging acquisition from sparse partial scans of distributed wide angle. During real time image reconstruction, artificial intelligence (AI) determines if there is enough information to perform diagnostics based on initial scans. If there is enough information from the fractional scans, then data acquisition stops; if more information is needed, then system performs another round of wide-angle sparse scans in a new location progressively until a result is satisfactory. The system reduces X-ray dose on a patient and performs quicker X-ray scan at multiple pulsed source-in-motion tomosynthesis imaging system. The method and system also significantly reduce the amount of time required to display high quality three-dimensional tomosynthesis images.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: March 5, 2024
    Assignee: AlxSCAN, Inc.
    Inventors: Jianqiang Liu, Manat Maolinbay, Chwen-yuan Ku, Linbo Yang
  • Patent number: 11913885
    Abstract: An abundance of specific species of phytoplankton in a phytoplankton group in which a plurality of kinds coexists is calculated in a simple manner. Based on a reference sample intensity ratio r0, a reference sample total fluorescence intensity I0, and an existing quantity K0 of specific species of phytoplankton, an intensity ratio rd of other species of plankton is calculated. An analysis sample that is expected to have similarity with the reference sample is irradiated with the excitation light, an intensity of fluorescence emitted from the analysis sample is measured in each of wavelength bands A and B, and an intensity ratio r is calculated. A total fluorescence intensity I is measured, and an existing quantity K of the specific species of the phytoplankton is calculated based on the intensity ratio rd of other species of plankton, the intensity ratio r, and the total fluorescence intensity I.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: February 27, 2024
    Assignee: JFE ADVANTECH CO., LTD.
    Inventors: Mitsuo Yoshida, Hiroharu Kato
  • Patent number: 11910515
    Abstract: An electromagnetic pump for pumping an electrically conductive liquid, including a first conduit section and a second conduit section. The electromagnetic pump further includes a current generator arranged to provide an electric current through the liquid in the first conduit section and the liquid in the second conduit section such that a direction of the electric current is intersecting the flow of the liquid in the first conduit section and in the second conduit section, and a magnetic field generating arrangement arranged to provide a magnetic field passing through the liquid in the first conduit section and the second conduit section such that a direction of the magnetic field is intersecting the flow of the liquid and the direction of the electric current.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: February 20, 2024
    Assignee: EXCILLUM AB
    Inventors: Ulf Lundström, Björn Hansson, Per Takman, Tomi Tuohimaa
  • Patent number: 11898963
    Abstract: Identifying 3D objects A method for identification of 3D objects comprises illuminating at least part of a 3D object with electromagnetic radiation, spectroscopically obtaining spectral data for one or more regions of the 3D object, and generating, at a data processing apparatus, an identification result for the 3D object using a trained machine learning model. The trained machine learning model processes the obtained spectral data for the one or more regions to generate one or more model outputs from which the identification result is derived.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: February 13, 2024
    Assignees: FUNDACIÓ INSTITUT DE CIÈNCIES FOTÒNIQUES, INSTITUCIÓ CATALANA DE RECERCA I ESTUDIS AVANÇATS
    Inventors: Valerio Pruneri, Mehmet Alican Noyan, Anatoly Grudinin