Abstract: A neutron detector having high sensitivity of detection for low energy neutrons is provided. The neutron detector 10 includes a detecting element including a Si semiconductor layer 2, a first electrode 1 formed on one main surface of the Si semiconductor layer 2 and a second electrode 4 formed on the other main surface of the Si semiconductor layer 2, in which the Si semiconductor layer 2 includes a P-type impurity region 2a in contact with the second electrode 4 and an N-type impurity region 2b in contact with the first electrode 1; and a radiator 8 arranged to face the first electrode 1. In addition, a personal dosemeter and a neutron fluence monitor including the same are provided.
Type:
Grant
Filed:
May 25, 2022
Date of Patent:
January 9, 2024
Assignees:
FUJI ELECTRIC CO., LTD., TAKASHI NAKAMURA
Abstract: The present disclosure describes methods for calibrating a spectral X-ray system to perform material decomposition with a single scan of an energy discriminating detector or with a single scan at each used X-ray spectrum. The methods may include material pathlengths exceeding the size of the volume reconstructable by the system. Example embodiments include physical and matching calibration phantoms. The physical calibration phantom is used to measure the attenuation of X-rays passing therethrough with all combinations of pathlengths through the calibration's basis materials. The matching digital calibration phantom is registered with the physical calibration phantom and is used to calculate the pathlength though each material for each measured attenuation value. A created data structure includes the X-ray attenuation for each X-ray spectrum or detector energy bin for all combinations of basis material pathlengths.
Type:
Grant
Filed:
December 27, 2019
Date of Patent:
January 9, 2024
Inventors:
Jay S. Schildkraut, Jean-Marc Inglese, Krishnamoorthy Subramanyan, Vincent Loustauneau
Abstract: A radiation imaging device according to one embodiment comprises a radiation detection panel, a base substrate having a support surface configured to support the radiation detection panel, and a housing, wherein: the housing has a top wall and a bottom wall, the base substrate has a protruding portion which protrudes further outward than the radiation detection panel when seen in a direction orthogonal to the support surface, a first extending portion is provided to the support surface of the protruding portion, a second extending portion is provided to a back surface of the protruding portion, the second extending portion being disposed at a position which it faces the first extending portion with the protruding portion interposed therebetween, and the base substrate is supported on the top wall via the first extending portion and is supported on the bottom wall via the second extending portion.
Abstract: The present invention relates in one aspect to a method of detecting a contaminant in a measurement chamber (201) of a sample analyzer (200). The sample analyzer (200) comprises an optical sensor with a sensor layer (205) comprising a luminophor (201), wherein the sensor layer (205) has a sensor surface (206) forming an interface to the measurement chamber (201).
Type:
Grant
Filed:
February 1, 2022
Date of Patent:
January 2, 2024
Assignee:
Radiometer Medical ApS
Inventors:
Peter Frischauf, Michael Taagaard, Flemming Aas
Abstract: A method for nanoscale tomographic infrared absorption imaging is provided, the method including: generating a first plurality of sets of probe measurements for a plurality of sample locations located across a surface of a sample, and measuring a magnitude and phase of a variation in displacement of the surface of the sample at the particular sample location at the second frequency, wherein the first frequency and the second frequency differ; and generating, based on the first plurality of sets of probe measurements, a three-dimensional tomographic map of absorption of infrared light at the first wavelength by the sample. Generating measurements for a particular location includes generating a first probe measurement by illuminating the sample with infrared light that varies at a first frequency and measuring a variation in displacement of the surface of the sample at the particular sample location at the first frequency.
Type:
Grant
Filed:
April 2, 2022
Date of Patent:
January 2, 2024
Assignee:
The Board of Trustees of the University of Illinois
Abstract: An automatic photocurrent spectrum measurement system based on a Fourier infrared spectrometer, including a light source component, an environment control component, a measuring module, and a control module. The system is configured to evaluate photoelectric performance semiconductor materials or devices under different temperatures, voltage biases or current biases.
Type:
Grant
Filed:
August 2, 2022
Date of Patent:
December 26, 2023
Assignee:
East China Normal University
Inventors:
Liangqing Zhu, Junli Wang, Liyan Shang, Le Wang, Zhigao Hu
Abstract: A flexible digital radiographic detector assembly includes a flexible sleeve enclosing a photosensor array supported by a flexible substrate. Integrated circuit readout electronics are coupled to the photosensor array and to a circuit board having conductive contacts. The contacts engage a hand carried read out electronics box to initiate a read out of image data captured in the photosensor array and to display the image data on a screen in the read out electronics box.
Abstract: A directly-converting X-ray detector includes: a directly-converting sensor material, which is to be maintained at a working temperature, and configured to have a DC voltage applied thereto; a conditioning unit configured to cause a base current to flow through the sensor material; a heating unit for the sensor material, the heating unit configured to be regulated by a regulating unit to maintain the working temperature; and a control device having a plurality of electronics units, which include the regulating unit. When a new configuration and/or a reconfiguration process takes place, the control device is configured to maintain the operation of the conditioning unit, and to interrupt the operation of the heating unit and/or maintain the operation of the heating unit with the control value most recently ascertained in ordinary operation of the regulating unit.
Type:
Grant
Filed:
June 21, 2022
Date of Patent:
December 26, 2023
Assignee:
SIEMENS HEALTHCARE GMBH
Inventors:
Alfons Eismann, Ulrich Wiesmann, Andreas Urban
Abstract: A subject information acquisition unit calculates a bone mineral density in the bone region and a muscle mass in the soft region for each pixel on the basis of a radiographic image. A statistical value calculation unit calculates a statistical value related to the subject on the basis of the bone mineral density and the muscle mass. An evaluation value calculation unit calculates the fracture risk evaluation value for evaluating the fracture risk of the subject on the basis of the statistical value.
Abstract: A high-throughput optical sectioning imaging method and imaging system. The method includes: modulating a light beam into a modulated light beam capable of being focused on a focal plane of an objective lens and being defocused on a defocusing plane of the objective lens, the modulated light beam having incompletely identical modulated intensities on the focal plane of the objective lens; imaging, in different rows of pixels, a sample under illumination of the modulated light beam to obtain sample images in the different rows of pixels; obtaining focal plane images of sample images in the different rows of pixels by demodulation of the sample images according to a demodulation algorithm. The system includes a light beam modulation module, an imaging module and a demodulation module.
Abstract: A radiation detector includes a scintillator that has a first surface on which radiation is incident and a second surface disposed on a side opposite to the first surface, and that converts the radiation into fluorescence; a sensor unit provided on a side of the second surface of the scintillator and having a light receiving surface that receives the fluorescence converted by the scintillator; and a plurality of members that reflect or absorb the fluorescence converted by the scintillator. Each of the plurality of members has an elongated shape having a longitudinal direction in a direction intersecting the light receiving surface of the sensor unit, and is provided in the scintillator at a position closer to the second surface than to the first surface.
Abstract: A method of forming a radiation detector includes forming a stack including a plurality of arrays of radiation detection devices. Forming an array of the plurality of arrays includes forming a polysilicon layer over an interlayer dielectric layer of another array of the plurality of arrays; forming charge storage layers over the polysilicon layer; forming a second polysilicon layer over the charge storage layers; etching the second polysilicon layer to form gate stacks; and depositing an interlayer dielectric disposed on at least three sides of the gate stacks, the interlayer dielectric including a radiation reactive material.
Type:
Grant
Filed:
April 22, 2020
Date of Patent:
December 19, 2023
Assignee:
CERIUM LABORATORIES LLC
Inventors:
Tim Z Hossain, Mark Clopton, Clayton Fullwood
Abstract: Disclosed herein is an apparatus, comprising: a platform configured to support a human body on a first surface of the platform; a first set of radiation detectors arranged in a first layer, wherein the radiation detectors of the first set are attached to a second surface of the platform opposite the first surface; wherein the radiation detectors of the first set are configured to detect radiation from a radiation source inside the human body.
Abstract: Disclosed here are monocrystalline silicon carbide grids and radiation detections systems comprising such grids. Specifically, a grid comprises a support frame and a grid portion. The support frame is used for installing and supporting the grid in a detection system. The grid portion comprises a plurality of ribs, which defines a plurality of grid openings. The grid portion is used to support various components (e.g., a membrane) while allowing radiation transmission through the grid. For example, the grid portion can support the pressure up to 2 bars. The open area fraction of the grid portion can be at least 50%, or even at least 90%. The grid portion is integrated with the support frame forming monocrystal silicon carbide (e.g., 4H—SiC polymorph). In some examples, the primary surface of the grid is oriented within 8° of the crystallographic c-axis planes of the monocrystal.
Abstract: Aspects of the present disclosure relate to a photon counting detector and to a read-out integrated circuit to be used in such detector. Aspects of the present disclosure particularly relate to X-ray applications. According to an aspect of the present disclosure, the detector comprises an electrical ground plane arranged at or near an interface between the carrier and at least one ROIC die. Each ROIC die comprises an extension region that laterally extends beyond the photon conversion assembly, wherein peripheral circuitry for a given ROIC die is arranged in the extension region of that ROIC die. The detector comprises at least one electrical connection that connects the power supply line that is arranged on the carrier to the peripheral circuitry of the at least one ROIC die.
Type:
Grant
Filed:
May 25, 2023
Date of Patent:
November 28, 2023
Assignee:
Teledyne Dalsa B.V.
Inventors:
Willem Johannes Kindt, Ernest Jannis Phaff, Daniel Wilhelmus Elisabeth Verbugt
Abstract: An optical sensor assembly is provided. The optical sensor assembly includes a circuit board, an optical sensor positioned on the circuit board, and a front cover attached to the circuit board and covering the optical sensor. The front cover includes an optical element configured to guide or condense an incident light of a predetermined wavelength onto the optical sensor. The front cover is made of polypropylene or polyethylene. The predetermined wavelength is in a range from 8 micrometers to 12 micrometers.
Abstract: The present invention relates to a method, a device, and a program for calculating a brachytherapy plan, and a brachytherapy apparatus. The method comprises: a step in which a computer obtains the number of radiation irradiation spots on the basis of radiation irradiation information (a radiation irradiation spot number obtaining step (S200)); a step in which the computer obtains target area information from a body model of a patient generated on the basis of medical image data of the patient (a target area information obtaining step (S400)); and a therapy plan calculating step (S600) in which the computer calculates, on the basis of the radiation irradiation information and the target area information, the radiation irradiation spots to which radiation is irradiated and the time length of irradiation to each radiation irradiation spot.
Type:
Grant
Filed:
December 3, 2020
Date of Patent:
November 21, 2023
Assignees:
THE ASAN FOUNDATION, UNIVERSITY OF ULSAN FOUNDATION FOR INDUSTRY COOPERATION, NATIONAL CANCER CENTER, THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY, KOREA INSTITUTE OF RADIOLOGICAL & MEDICAL SCIENCES
Inventors:
Ho Jin Kim, Jung Won Kwak, Byung Chul Cho, Sang Wook Lee, Chi Young Jeong, Young Kyung Lim, Ui Jung Hwang, Sang Hyoun Choi
Abstract: An X-ray system includes an X-ray generation unit configured to generate X-rays; an X-ray detection unit including at least one X-ray sensor that includes an indirect bandgap, perovskite semiconductor material, the X-ray sensor being configured to record the X-rays; and a control unit that controls a generation of the X-rays and a detection of the X-rays at the X-ray detection unit.
Type:
Grant
Filed:
April 23, 2020
Date of Patent:
November 21, 2023
Assignee:
KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
Abstract: A radiation particle strike detection system is disclosed. The radiation particle strike detection system includes a radiation particle detector and a controller coupled to the radiation particle detector. The radiation particle detector is overlayed on at least one surface of a payload that is sensitive to interaction with radiation particles. The radiation particle detector is configured to undergo a change in state responsive to a radiation particle strike at a location on the radiation particle detector. The controller is configured to 1) monitor a state of the radiation particle detector; 2) detect a radiation particle strike on the radiation particle detector based on a change in state of the radiation particle detector; and 3) determine a location and time of the radiation particle strike on the radiation particle detector based on the change in state of the particle detector.
Abstract: A lower electrode of a PIN diode and a second protective layer covering the PIN diode are formed not using separate mask processes, but using the same mask process using the same mask, thereby reducing the number of mask processes and thus increasing process efficiency. Further, the lower electrode of the PIN diode is patterned and then the second protective film covering the PIN diode is patterned such that both the former patterning and the latter patterning are carried out using a single mask process, thereby reduce increase in defects due to foreign materials or stains.
Type:
Grant
Filed:
November 24, 2021
Date of Patent:
November 14, 2023
Assignee:
LG Display Co., Ltd.
Inventors:
Jaeho Yoon, Donghyeon Jang, Shihyung Park, Moonsoo Kang, Donghwan Lee