Patents Examined by Hung Nguyen
  • Patent number: 10921717
    Abstract: An exposure apparatus includes a projection optical system configured to project, onto a substrate, exposure light for forming a pattern on the substrate; a light shielding member having an opening for allowing light reflected by the substrate to pass therethrough and a light receiving element configured to receive a light flux passing through the opening after being reflected by the substrate; and a control unit configured to perform focus control for changing a defocus amount representing a positional deviation between a condensed position of the exposure light and the substrate in accordance with the amount of light received by the light receiving element. The light shielding member is disposed at a position that is optically conjugate to the substrate in an in-focus state where the defocus is smaller than a predetermined amount.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 16, 2021
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Michio Kono
  • Patent number: 10908429
    Abstract: An extreme ultraviolet light generation system according to one aspect of the present disclosure includes: a pulse laser apparatus configured to output a pulse laser beam, the pulse laser beam being supplied to a predetermined region in a chamber in which plasma containing extreme ultraviolet light is to be generated; a sensor configured to detect a beam size of the pulse laser beam; an actuator configured to change the beam size; and a controller. The controller performs, based on a first algorithm, first control that controls the actuator by a first control amount in a beam size minifying direction when the beam size has exceeded a first upper limit threshold in one burst duration, and then performs, based on a second algorithm, second control that controls the actuator by a second control amount smaller than the first control amount so that the beam size becomes closer to a target value.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: February 2, 2021
    Assignee: Gigaphoton Inc.
    Inventors: Takayuki Yabu, Yuichi Nishimura
  • Patent number: 10908504
    Abstract: An imaging apparatus for exposing a pattern onto a substrate has an illumination source that is energizable to generate a polarized exposure illumination beam of an actinic wavelength range and a mask disposed to impart the pattern to the polarized exposure illumination beam. A polarization beam splitter defines an illumination path that conveys the generated polarized exposure illumination beam through a quarter wave plate and plano-convex lens and toward a concave mirror and further conveys a reflected exposure illumination beam from the concave mirror toward an exposure plane for exposing the imparted pattern onto the substrate. The exposure plane is defined by the concave mirror, the plano convex lens, and the polarization beam splitter.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: February 2, 2021
    Assignee: Optical Associates, Inc.
    Inventors: David Kessler, Evan Keith Palmer
  • Patent number: 10898955
    Abstract: A substrate holder for a lithographic apparatus has a main body having a thin-film stack provided on a surface thereof. The thin-film stack forms an electronic or electric component such as an electrode, a sensor, a heater, a transistor or a logic device, and has a top isolation layer. A plurality of burs to support a substrate are formed on the thin-film stack or in apertures of the thin-film stack.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: January 26, 2021
    Assignee: ASME NETHERLANDS B.V.
    Inventors: Raymond Wilhelmus Louis Lafarre, Sjoerd Nicolaas Lambertus Donders, Nicolaas Ten Kate, Nina Vladimirovna Dziomkina, Yogesh Pramod Karade, Elisabeth Corinne Rodenburg
  • Patent number: 10901326
    Abstract: In a method of controlling a lithographic apparatus, historical performance measurements are used to calculate a process model relating to a lithographic process. Current positions of a plurality of alignment marks provided on a current substrate are measured and used to calculate a substrate model relating to a current substrate. Additionally, historical position measurements obtained at the time of processing the prior substrates are used with the historical performance measurements to calculate a model mapping. The model mapping is applied to modify the substrate model. The lithographic apparatus is controlled using the process model and the modified substrate model together. Overlay performance is improved by avoiding over- or under-correction of correlated components of the process model and the substrate model. The model mapping may be a subspace mapping, and dimensionality of the model mapping may be reduced, before it is used.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: January 26, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Edo Maria Hulsebos, Patricius Aloysius Jacobus Tinnemans, Ralph Brinkhof, Pieter Jacob Heres, Jorn Kjeld Lucas, Loek Johannes Petrus Verhees, Ingrid Margaretha Ardina Van Donkelaar, Franciscus Godefridus Casper Bijnen
  • Patent number: 10895809
    Abstract: A photomask alignment method for a manufacturing process of an integrated circuit in a semiconductor material wafer (20), the method envisaging: at a first level, defining, by means of a single photolithography process, at least one alignment structure (10; 10?) on the wafer (20), the alignment structure (10; 10?) having at least a first (4a) and a second (4b) reference mark; and, at an upper level, higher than the first one, aligning a first field mask (11a) relative to the at least one first reference mark (4a); and aligning a second field mask (11b), which is used, together with the first field mask (11a), for the photolithography formation of the integrated circuit inside a respective die (22) in the wafer (20), relative to the at least one second reference mark (4b), so that the first and second field masks (11a, 11b) are arranged on the wafer (20) adjacent to one another in a first coupling direction, without any mutual overlapping.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: January 19, 2021
    Inventor: Gianluca Eugeni
  • Patent number: 10890537
    Abstract: An imaging lighting device of an appearance inspection device images a product T. A controller of the appearance inspection device causes an imaging control unit to obtain an image, a preprocessing unit to position the product and remove background of the product, a color space processing unit to perform color space processing for emphasizing a defect such as a flaw and a dent of the product and to create a color space processing image, and an assessment unit to make an quality assessment of the product using a learned model obtained through machine learning of quality assessment of the product using the color space processing image.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: January 12, 2021
    Assignee: SERENDIPITY CO., LTD
    Inventors: Shinichi Hanabusa, Yusuke Omori, Hayato Akuzawa
  • Patent number: 10890853
    Abstract: An exposure device may include an exposure head that may radiate an exposure beam onto a substrate on a stage, a support that may be provided on the stage to support the exposure head, a chamber that may accommodate the stage, the exposure head, and the support. The exposure device may include first protrusions that may be disposed on an outer circumference of the support adjacent to an inner wall of the chamber, and second protrusions that may be disposed on the inner wall of the chamber surrounding the outer circumference of the support. The first and second protrusions may overlap each other in a plan view.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: January 12, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Kab Jong Seo, Min Suk Ko, Si Kwang Kim, Yong Hoon Yang
  • Patent number: 10884337
    Abstract: A substrate processing apparatus includes: a plurality of unit blocks, each having a plurality of modules for processing substrates and a substrate transfer path; a plurality of main transfer mechanisms, each being provided on the substrate transfer path, and configured to transfer the substrates among the plurality of modules; a loading and unloading transfer mechanism configured to load and unload the substrates with respect to each of the unit blocks; a memory configured to store substrate transfer history for each of the unit blocks; and a setting part configured to update a cycle time, which is a time required for a corresponding one of the main transfer mechanisms to move around the substrate transfer path once, of each of the unit blocks based on the substrate transfer history, and configured to set a transfer schedule of the substrates in each of the unit blocks based on the updated cycle time.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: January 5, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Kenichirou Matsuyama
  • Patent number: 10877366
    Abstract: A droplet collection bucket includes a droplet collection tube, a level sensor positioned on the droplet collection tube, a gate valve configured to close a rear portion of the droplet collection tube, a gas supply configured to supply a gas into the rear portion of the droplet collection tube, a heating element wrapping around the droplet collection tube, and a drain tube connecting an interior of the droplet collection tube with an outside of the droplet collection tube.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: December 29, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi Yang, Hsin-Feng Chen, Li-Jui Chen
  • Patent number: 10877376
    Abstract: A light irradiating device includes a substrate holder configured to hold a substrate; a light irradiating unit; and a power feed unit. The light irradiating unit comprises a light source configured to irradiate light to a surface of the substrate; and a first connector electrically connected with the light source. The power feed unit comprises a power supply module configured to supply a power to the light source; and a second connector electrically connected with the power supply module and configured to be connected to or disconnected from the first connector. The light irradiating unit and the power feed unit are coupled as one body as the first connector and the second connector are connected, and are separated from each other as the first connector and the second connector are disconnected from each other.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 29, 2020
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Ryo Shimada, Kazuhiro Takeshita, Teruhiko Moriya
  • Patent number: 10877379
    Abstract: An illumination intensity correction device can specify an illumination intensity over an illumination field of a lithographic projection exposure apparatus. The correction device has a plurality of rod-shaped individual stops arranged next to one another. A displacement drive can displace at least some of the individual stops at least along their respective rod axis. Free ends of the individual stops are individually displaceable using the displacement drive into a specified displacement position to specify an intensity correction of an illumination of the illumination field. The intensity correction acts along a correction dimension transverse with respect to the rod axes.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: December 29, 2020
    Assignees: Carl Zeiss SMT GmbH, ASML Netherlands B.V.
    Inventors: Ramon Van Gorkom, Martin Endres
  • Patent number: 10871384
    Abstract: Absolute, non-juxtaposed position encoders (i.e., position-determining systems) for up to six degrees-of-freedom are described. Each of these apparatus includes a display, an observation device, display circuitry, and logic circuitry. The display includes a plurality of pixels. In addition, the observation device is capable of observing light emitted from a region of the display. The display circuitry is able to cause one or more emissive patterns to be displayed on the display. The logic circuitry is able to determine a position of the observation device relative to the display at least in part from the light observed by the observation device. The observation device is capable of being moved in relation to the display, or vice versa. Aspects of the invention are suitable for use in a diverse set of applications such as: autonomously-piloted vehicles, multi-axis robotic arms, three-dimensional (3D) printers, computer-numerical-control (CNC) machine tools, and cranes.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: December 22, 2020
    Inventor: Thomas P. Moyer
  • Patent number: 10866196
    Abstract: A system for use in performing maintenance on a turbine rotor. The system includes a rotor mount configured to receive the turbine rotor, a robotic device, a visual inspection device removably coupleable to the robotic device, and a computing device. The computing device is configured to direct the robotic device to evaluate, with the visual inspection device, the turbine rotor at different circumferential locations thereof to obtain rotor axis data, determine a centerline of the turbine rotor based on the rotor axis data, generate a coordinate system including the centerline of the turbine rotor, direct the robotic device to evaluate, with the visual inspection device, each blade on at least one stage of the turbine rotor to obtain blade position data relative to the centerline, and populate the coordinate system with the blade position data.
    Type: Grant
    Filed: February 17, 2020
    Date of Patent: December 15, 2020
    Assignee: General Electric Company
    Inventors: Lukasz Sajdak, Dariusz Zybura, Anna Ewa Swieca, Kamil Koszarny
  • Patent number: 10866525
    Abstract: A method of manufacturing a semiconductor device includes dividing a number of dies along an x axis in a die matrix in each exposure field in an exposure field matrix delineated on the semiconductor substrate, wherein the x axis is parallel to one edge of a smallest rectangle enclosing the exposure field matrix. A number of dies is divided along a y axis in the die matrix, wherein the y axis is perpendicular to the x axis. Sequences SNx0, SNx1, SNx, SNxr, SNy0, SNy1, SNy, and SNyr are formed. p*(Nbx+1)?2 stepping operations are performed in a third direction and first sequence exposure/stepping/exposure operations and second sequence exposure/stepping/exposure operations are performed alternately between any two adjacent stepping operations as well as before a first stepping operation and after a last stepping operation. A distance of each stepping operation in order follows the sequence SNx.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shinn-Sheng Yu, Ru-Gun Liu, Hsu-Ting Huang, Kenji Yamazoe, Minfeng Chen, Shuo-Yen Chou, Chin-Hsiang Lin
  • Patent number: 10866521
    Abstract: An exposure apparatus includes: a first light source that generates first exposure light, a diaphragm having plurality of openings positioned between the first light source and an exposure photomask, a plurality of first projection optical systems that individually project an optical image realized by the first exposure light transmitted through each of the plurality of openings on an exposure target, a second light source that generates second exposure light, and a correction stepper. The correction stepper irradiates a light amount correction region with the second exposure light so as to limit an irradiation range of the exposure target to be irradiated with the second exposure light transmitted through the exposure photomask, and the light amount correction region is a region extending in a first direction by a width of a multi-opening region in a second direction in a plan view.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 15, 2020
    Assignee: TOPPAN PRINTING CO.. LTD.
    Inventors: Akihito Okumura, Yoshinori Motoda, Hiroaki Miyaji
  • Patent number: 10866529
    Abstract: A lithographic apparatus is described, the apparatus comprising: a projection system configured to project a patterned beam of radiation onto a substrate; the projection system comprising a plurality of optical elements; a sensor frame; a first position measurement system configured to measure a position of the plurality of optical elements relative to the sensor frame; wherein the sensor frame comprises: N sub-frames, N being an integer >1, a coupling system coupling the N sub-frames and a second position measurement system configured to determine a relative position of the N sub-frames.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: December 15, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Hans Butler, Michael Johannes Vervoordeldonk, Maurice Willem Jozef Etiënne Wijckmans
  • Patent number: 10866520
    Abstract: A light irradiation method includes splitting light from a coherent light source, which outputs the light at a wavelength equal to or less than 300 nm, into a plurality of branch beams. A wavefront of the light is shaped before splitting the light. The light irradiation method also includes causing the branch beams to intersect at an interference angle equal to or less than 20° to generate interfered light, and irradiating a substrate with the interfered light while continuously conveying the substrate relative to the interfered light.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: December 15, 2020
    Assignee: USHIO DENKI KABUSHIKI KAISHA
    Inventor: Daisuke Yajima
  • Patent number: 10852642
    Abstract: A control apparatus controls at least one manipulator for modifying a parameter of a microlithographic projection exposure apparatus by generating a target for a travel variable, which defines a modification of the parameter to be undertaken via the manipulator. The control apparatus is configured to generate the target from a state characterization of the projection exposure apparatus by optimizing a merit function. A merit function includes at least one penalty term for taking account of a limit for a property of the projection exposure apparatus as an implicit constraint and the penalty term is formulated in such a way that the function value thereof tends to “infinity” as the property approaches the limit.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: December 1, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Bjoern Butscher, Christian Wald
  • Patent number: 10852640
    Abstract: An optical diffraction component is configured to suppress at least one target wavelength by destructive interference. The optical diffraction component includes at least three diffraction structure levels that are assignable to at least two diffraction structure groups. A first of the diffraction structure groups is configured to suppress a first target wavelength ?1. A second of the diffraction structure groups is configured to suppress a second target wavelength ?2, where (?1??2)2/(?1+?2)2<20%. A topography of the diffraction structure levels can be described as a superimposition of two binary diffraction structure groups. Boundary regions between adjacent surface sections of each of the binary diffraction structure groups have a linear course and are superimposed on one another at most along sections of the linear course.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: December 1, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Heiko Feldmann, Valentin Bolsinger, William Peter Van Drent, Jozef Petrus Henricus Benschop