Patents Examined by Jafar Parsa
  • Patent number: 9481837
    Abstract: Processes, systems and equipment can be used to convert carbonaceous fuel to an output gas stream that includes CO as a primary C-containing product. In some embodiments, the processes and systems also can produce H2 in a separate reaction, with the H2 advantageously being capable of being combined with the CO from a partial oxidation process to provide syngas which, in turn, can be used to produce fuels and chemicals. The processes and systems can be tuned so as to not produce significant amounts of CO2 and do not require an air separation unit.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 1, 2016
    Assignee: The Babcock & Wilcox Company
    Inventors: Luis G Velazquez-Vargas, Thomas J Flynn, Bartev B Sakadjian, Douglas J DeVault, David L Kraft
  • Patent number: 9475995
    Abstract: Disclosed are a gas to liquids (GTL)—floating production, storage and offloading (FPSO) system that can be used in offshore oil-gas fields or stranded gas fields and a method for producing synthetic fuel using the same. More particularly, the disclosure relates to a GTL-FPSO system capable of producing liquid synthetic fuel from gas extracted from stranded gas fields or associated gas extracted from oil-gas fields, including a reforming reactor and a liquid hydrocarbon producer, and a method for producing the same.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: October 25, 2016
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Yun Ju Lee, Jung Shik Kang, Moonju Park, Sojung Kim, Sang Deuk Lee, Hyunjoo Lee
  • Patent number: 9475745
    Abstract: In a process for producing phenol and cyclohexanone, a cleavage feed containing greater than 40 wt % and no greater than 95 wt % cyclohexyl-1-phenyl-1-hydroperoxide, and at least 5 wt % and less than 60 wt % cyclohexylbenzene is mixed with at least phenol, cyclohexanone, water, and sulfuric acid to produce a cleavage reaction mixture containing from 15 wt % to 50 wt % phenol, from 15 wt % to 50 wt % cyclohexanone, from 1 wt % to 10 wt % cyclohexyl-1-phenyl-1-hydroperoxide, from 5 wt % to 60 wt % cyclohexylbenzene, from 0.1 wt % to 4 wt % water, and from 10 wppm to 1000 wppm sulfuric acid. The cleavage reaction mixture is then reacted at a temperature from 30° C. and to 70° C., and a pressure of at least 1 atmosphere for a time sufficient to convert at least 50% of said cyclohexyl-1-phenyl-1-hydroperoxide in said cleavage reaction mixture and produce a cleavage effluent containing phenol and cyclohexanone.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: October 25, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Keith H. Kuechler, Charles Morris Smith, Francisco M. Benitez, Kun Wang, Hari Nair, Travis A. Reine, Gabor Kiss, Roberto Garcia, Christopher L. Becker
  • Patent number: 9475697
    Abstract: Processes of and systems for removing free bromine from gaseous anhydrous HBr contaminated with free bromine are described. In one type of process the gaseous contaminated HBr is fed into countercurrent contact with at least one liquid alkylaromatic hydrocarbon within a packed section of a column while maintaining the packed section under free radical bromination conditions so that one or more than one liquid a-bromoalkylaromatic compound is produced along with one mole of gaseous HBr per mole of a-bromoalkylaromatic compound produced. In another type of process the gaseous anhydrous HBr is fed into countercurrent contact through at least two scrubbers so that the gaseous anhydrous HBr is scrubbed substantially free of bromine by passage through these at least two scrubbers, each of which contains a different specified type of scrubbing liquid. In one embodiment the liquid alkylaromatic hydrocarbon comprises 1,2-diphenylethane.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: October 25, 2016
    Assignee: Albemarle Corporation
    Inventors: William B. Harrod, John M. Harden, Rhett P. Heeb, Steven G. Karseboom, Gary L. Sharp, Robert E. Williams
  • Patent number: 9475741
    Abstract: The invention relates to a method for obtaining higher alcohols from lower alcohols with a catalyst that is a metal oxide comprising gallium and a noble metal selected from the list containing Pd, Pt, Ru, Rh and Re.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: October 25, 2016
    Assignee: ABENGOA BIOENERGÍA NUEVAS TECHNOLOGÍAS, S. A.
    Inventors: Ricardo Arjona Antolín, Juan Luís Sanz Yagüe, Avelino Corma Canós, Marcelo Eduardo Domine, Fernando Vidal Barrero, Francisco Antonio Ladrón de Guevara Vidal
  • Patent number: 9469820
    Abstract: A method for recycling carbon dioxide from biomass gasification. The method includes: 1) employing carbon dioxide as a gasifying agent, allowing the carbon dioxide to gasify biomass to yield syngas; 2) cooling the syngas; 3) introduced cooled syngas to a cyclone separator and a gas scrubber for dust removal and purification; 4) allowing purified syngas in 3) to react with the vapor to modify a ratio of hydrogen to carbon monoxide of the syngas; 5) desulfurizing modified syngas to remove H2S and COS therein; 6) decarburizing desulfurized syngas to separate carbon dioxide therein; 7) introducing desulfurized and decarburized syngas to a synthesizing tower to yield oil products and exhaust gas including carbon dioxide; 8) decarburizing the exhaust gas including carbon dioxide and separating the carbon dioxide; and 9) introducing the carbon dioxide separated in 6) and 8) to 1) as the gasifying agent for gasification.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: October 18, 2016
    Assignee: WUHAN KAIDI ENGINEERING TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Yanfeng Zhang, Liang Zhang, Minggui Xia, Wenyan Liu
  • Patent number: 9469600
    Abstract: Prostacyclin compounds and compositions comprising the same are provided herein. Specifically, prostacyclin compounds comprising treprostinil covalently linked to a linear C5-C18 alkyl, branched C5-C18 alkyl, linear C2-C18 alkenyl, branched C3-C18 alkenyl, aryl, aryl-C1-C18 alkyl or an amino acid or a peptide (e.g., dipeptide, tripeptide, tetrapeptide) are described. The linkage, in one embodiment, is via a carbamate, amide or ester bond. Prostacyclin compounds provided herein can also include at least one hydrogen atom substituted with at least one deuterium atom. Methods for treating pulmonary hypertension (e.g., pulmonary arterial hypertension) and portopulmonary hypertension are also provided.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: October 18, 2016
    Assignee: Insmed Incorporated
    Inventors: Vladimir Malinin, Walter Perkins, Franziska Leifer, Donna Konicek, Zhili Li, Adam Plaunt
  • Patent number: 9464237
    Abstract: The invention relates to a process for starting up a gas-to-liquid process including the production of synthesis gas and a downstream GTL process. The synthesis gas is produced by the use of autothermal reforming (ATR) or catalytic partial oxidation (CPO) and during the starting period the effluent gas from the ATR or CPO is significantly changed to form an off-gas recycle which is fed to the ATR or CPO. When the downstream GTL process is running, the recycle to ATR or CPO is shifted to its off-gas.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: October 11, 2016
    Assignee: Haldor Topsoe A/S
    Inventors: Per Juul Dahl, Stefan Andersen
  • Patent number: 9464025
    Abstract: A method for preparing at least one ester of levulinic acid from a biomass includes steps of impregnating the biomass by an organic or inorganic acid, and putting the acidified biomass in contact with a supercritical fluid including at least one olefin.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: October 11, 2016
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S.), UNIVERSITE CLAUDE BERNARD LYON 1
    Inventors: Nadine Essayem, Gilbert Sapaly, Marion Eternot, Franck Rataboul
  • Patent number: 9464029
    Abstract: The invention relates to a process for preparing nitroalkanes by reaction of at least one alkane with at least one nitrating agent in the gas phase, wherein the nitration is carried out in a microstructured reaction zone having parallel channels having hydraulic diameters of less than 2.5 mm and a total specific internal surface area of more than 1600 m2/m3 and the alkane and the nitrating agent are conveyed under a pressure of from 1 bar to 20 bar through the reaction zone and reacted at a temperature of from 150° C. to 650° C. and the reaction products are cooled downstream of the reaction zone and discharged and the at least one nitrating agent is introduced over from two to ten introduction points along the reaction zone.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: October 11, 2016
    Assignee: BASF SE
    Inventors: Ralf Boehling, Michael Hayer, Alwin Rehfinger, Michael Schelper, Johann-Peter Melder, Martin Ernst, Joaquim Henrique Teles
  • Patent number: 9464014
    Abstract: In a process for the preparation of methanolin parallel reactors, comprising the steps of (a) reacting carbon oxides and hydrogen in the presence of a methanol catalyst in a first methanol reactor to obtain a first methanol-containing effluent, (b) introducing and reacting unconverted synthesis gas in a second methanol reactor in the presence of a methanol catalyst to obtain a second methanol-containing effluent, the first methanol reactor and the second methanol reactor being connected in parallel, (c) combining the first and second effluent, and (d) cooling and separating the combined and cooled effluent into a methanol-containing liquid phase and unconverted synthesis gas, the methanol catalyst in the first methanol reactor is indirectly cooled by boiling water and the methanol catalyst in the second methanol reactor is either directly or indirectly cooled by the unconverted synthesis gas prior to conversion into the second effluent.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: October 11, 2016
    Assignee: Haldor Topsoe A/S
    Inventors: Hassan Modarresi, Christian Wix
  • Patent number: 9458070
    Abstract: Disclosed is an HFO-1234ze preparation process. The present invention is realized by loading two fluorination catalysts into the same reactor, and controlling the temperature in each section. The preparation process of the present invention is of moderate reaction condition, stable catalyst activity, and simple process.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 4, 2016
    Assignees: SINOCHEM MODERN ENVIRONMENTAL PROTECTION CHEMICALS (XI'AN) CO., LTD., Sinochem Lantian Co., Ltd.
    Inventors: Lei Xu, Gang Yang, Huie Yang, Shukang Chen, Zhixia Zhao
  • Patent number: 9452935
    Abstract: A process and an apparatus for converting carbon dioxide CO2 into carbon monoxide CO using hydrocarbons are described. In further embodiments, processes and apparatuses for generating synthesis gas and processes and apparatuses for converting synthesis gas into synthetic functionalized and/or non-functionalized hydrocarbons using CO2 and hydrocarbons are described. The processes and apparatuses are adapted to convert CO2 emitted by industrial processes, and thus the amount of carbon dioxide emitted into the atmosphere may be reduced.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 27, 2016
    Assignee: CCP Technology GmbH
    Inventor: Olaf Kuhl
  • Patent number: 9452958
    Abstract: This invention provides a process for producing a fluoroolefin comprising reacting, in a vapor phase, a fluorinating agent and a chlorine-containing alkene or a chlorine-containing alkane in the presence of at least one catalyst selected from the group consisting of chromium oxide containing a Group 5 element and fluorinated chromium oxide containing a Group 5 element. According to the process of the present invention, the target fluoroolefin can be obtained with high starting material conversion and good selectivity.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: September 27, 2016
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Daisuke Karube, Takehiro Chaki, Masami Nishiumi, Takashi Shibanuma, Masashi Arai
  • Patent number: 9452963
    Abstract: Disclosed is a method for producing 1,3-butadiene and/or 3-buten-2-ol from 2,3-butanediol with high selectivity without using a radioactive substance. The method for producing 1,3-butadiene and/or 3-buten-2-ol comprises the step of dehydrating 2,3-butanediol in the presence of scandium oxide. The method enables the production of 1,3-butadiene and/or 3-buten-2-ol from 2,3-butanediol with high selectivity without using a radioactive substance.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: September 27, 2016
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Satoshi Sakami, Katsushige Yamada, Satoshi Sato, Hailing Duan
  • Patent number: 9452408
    Abstract: A method of starting up one or more units, the method comprising the steps of: (a) starting up a first unit including a microchannel reactor housing a Fischer-Tropsch catalyst by initially feeding a carbon monoxide source and a hydrogen source to the first unit and through the microchannel reactor; (b) processing, within the microchannel reactor, at least a portion of the carbon monoxide source and the hydrogen source; (c) monitoring at least one of internal pressure, temperature, and concentration at least one of within the microchannel reactor and downstream from the microchannel reactor; (d) at least partially containing the microchannel reactor using a wall of a containment device, the wall cooperating with the microchannel reactor to delineate at least one of a first inlet cavity and a first outlet cavity of the microchannel reactor, where at least one of the first inlet cavity and the first outlet cavity is not in fluid communication with at least one of a second inlet cavity and a second outlet cavity;
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: September 27, 2016
    Assignee: Velocys, Inc.
    Inventors: William Allen Rogers, Jr., Christopher Paul Weil, Robert Dwayne Litt, Ronald Chester Pasadyn, George Bradley Smith, Charles Robert Miele, Thomas Peter Forte, Jimmy Glen Pelham
  • Patent number: 9453165
    Abstract: A process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms comprises: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. A supported catalyst comprises Co, and a microchannel reactor comprises at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: September 27, 2016
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 9446391
    Abstract: The invention relates to a process for producing a protected reduced supported metal catalyst powder, in particular catalysts used in a variety of chemical reactions, such as the hydrogenation of hydrocarbon compounds in petrochemical and oleochemical processes; the hydrogenation of unsaturated fats and oils, and unsaturated hydrocarbon resins; and in the Fischer Tropsch process. This invention also relates to a composition comprising said catalyst and a liquid. In accordance with the invention there is provided a process for preparing a protected, reduced metal catalyst on a support, wherein said supported catalyst is in the form of a powder, which process comprises contacting and mixing said supported catalyst with a liquid in an inert atmosphere and wherein the amount of liquid corresponds to up to five times the amount required for incipient wetness.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: September 20, 2016
    Assignee: BASF CORPORATION
    Inventors: Robert Johan Andreas Maria Terörde, Albertus Jacobus Sandee
  • Patent number: 9447004
    Abstract: The present process relates to a process comprising: contacting a mixture comprising 2,3,3,3-tetrafluoropropene and at least one halogenated ethylene impurity with at least one adsorbent or at least one chemisorption catalyst to reduce the concentration of said at least one halogenated ethylene impurity.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: September 20, 2016
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Patent number: 9440896
    Abstract: Disclosed is a process for producing hexafluoro-2-butyne comprising, reacting HCFC-336 with an aqueous solution of an alkali metal hydroxide in the presence of a quaternary alkylammonium salt which comprises at least one alkyl group of at least 8 carbons, and recovering the hexafluoro-2-butyne, wherein the conversion of dichloro-1,1,1,4,4,4-hexafluorobutane is at least 50% per hour. Also disclosed is a process for producing hexafluoro-2-butyne comprising, reacting HCFC-336 with an aqueous solution of an alkali metal hydroxide in the presence of a quaternary alkylammonium salt having alkyl groups of from four to ten carbon atoms, and mixtures thereof, and a non-ionic surfactant, and recovering the hexafluoro-2-butyne, and wherein the conversion of dichloro-1,1,1,4,4,4-hexafluorobutane to hexafluoro-2-butyne is at least 20% per hour.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: September 13, 2016
    Assignee: THE CHEMOURS COMPANY FC, LLC
    Inventors: Sheng Peng, Mario Joseph Nappa