Patents Examined by Jennifer D. Carruth
  • Patent number: 11048076
    Abstract: A mirror unit includes a mirror device, a light incident/emission portion, and a support portion. The mirror device includes a base, a movable mirror, and a drive unit. The light incident/emission portion includes a first joining portion joined to a region that is located between a first electrode pad and a second electrode pad, and at least one of the movable mirror and the drive unit in a first surface of the base, and a first main body portion. The support portion includes a second joining portion joined to a region that overlaps each of the first electrode pad and the second electrode pad when viewed from a first direction in a second surface of the base, and a second main body portion. The first main body portion is provided with a first light passage region that overlaps a mirror surface of the movable mirror when viewed from the first direction.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: June 29, 2021
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Tatsuya Sugimoto, Tomofumi Suzuki, Kyosuke Kotani, Yutaka Kuramoto
  • Patent number: 11039034
    Abstract: An image forming apparatus includes a lens, first and second light sensors, a change amount detector, and a controller. The lens is in one of laser scanning systems. The first light sensor is in the one of the laser scanning systems at a position such that the scanning beam is incident on a detection surface thereof. The second light sensor is adjacent to the first light sensor and angled with respect to the first light sensor. The second light sensor is arranged such that the scanning beam is also incident on a detection surface thereof. The change amount detector is configured to detect a time interval of scanning of the first and second light sensors by the scanning beam. The controller is configured to perform an operation to calibrate the laser scanning systems when the time interval is equal to or greater than a first threshold value.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: June 15, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA TEC KABUSHIKI KAISHA
    Inventor: Yoshihisa Masuda
  • Patent number: 11036030
    Abstract: A Micro-Electromechanical System (MEMS) device having improved thermal management, and methods of fabricating the same are described. Generally, the device includes a piston layer suspended over a surface of a substrate by posts at four corners thereof, the piston layer including an electrostatically deflectable piston and a number of flexures through which the piston is coupled to the posts. A faceplate including an aperture through which the piston is exposed is suspended over the piston layer. Thermal sinking structures project from the surface of the substrate and extend through void spaces between the posts, the flexures and the piston of the piston layer to provide thermal management of the piston layer. The thermal posts substantially fill the void spaces without contacting either the flexures or the piston, and without altering a deflection gap between the piston and the surface of the substrate. Other embodiments are also described.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: June 15, 2021
    Assignee: SILICON LIGHT MACHINES CORPORATION
    Inventor: Sae Won Lee
  • Patent number: 11036182
    Abstract: A machine is configured to perform hologram location within a scene to be generated. The machine accesses target motion data that describes movement of a target device. Based on the target motion data, the machine determines a target motion vector that indicates a target speed of the target device and indicates a target direction in which the target device is moving. The machine determines a hologram motion vector for a hologram to be generated for display by a user device. The hologram motion vector indicates a relative speed of the hologram and indicates a relative direction of movement for the hologram. The machine then causes the user device to generate a scene in which the hologram moves at a speed determined based on the target speed and on the relative speed, as well as moves in a direction determined based on the target direction and on the relative direction.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: June 15, 2021
    Assignee: 8i Limited
    Inventor: Lincoln Gasking
  • Patent number: 11006825
    Abstract: Optical Coherence Tomography Angiography (OCTA) image representation is obtained having OCTA pixels assigned respective OCTA values. A vessel density map is computed from the OCTA image representation. A fractional deviation map and/or a pattern deviation map is computed for the patient from the vessel density map and a normative database, wherein: (1) the fractional deviation map represents a percent loss of vessel density at each pixel location relative to an expected value based on the normative database; and (2) computing the pattern deviation map includes: computing a pattern map of the vessel density representing a normalized vessel density pattern of the vessel density map relative to an average value of the vessel density map; and computing the pattern deviation map using the pattern map. A loss is determined by using at least one of the fractional deviation map and the pattern deviation map. Other features are also provided.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 18, 2021
    Assignee: OPTOVUE, INC.
    Inventors: Jay Wei, Tony H. Ko, Yi-Sing Hsiao, Ben Jang, Richard Rosen
  • Patent number: 11002966
    Abstract: Systems, devices, and methods for eyebox expansion in wearable heads-up displays (WHUD) are described. A WHUD includes a support structure, a scanning laser projector (SLP), a split mirror, an optical splitter, and a holographic combiner. When the WHUD is worn on the head of a user the holographic combiner is positioned in a field of view of the user. The SLP scans light signals onto the split mirror which reflects the light signals onto the optical splitter. The optical splitter redirects the light signals towards the holographic combiner such that subsets of the light signals originate from spatially-separated virtual positions. The holographic combiner redirects the light to the eye resulting in spatially-separated exit pupils. The spatial separation of the exit pupils results in an expanded eyebox. The indirect path of light from SLP to optical splitter enables a smaller and therefore more aesthetically desirable design for the WHUD.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: May 11, 2021
    Assignee: GOOGLE LLC
    Inventors: Ian Andrews, Joshua Moore
  • Patent number: 11002957
    Abstract: An optical device that provides a broadened circular scanning pattern. The device includes a reflector system dimensioned to form a coupled oscillator with two modes of oscillation for circular tilt motion, a first mode oscillation in a first resonance frequency and a second mode of oscillation in a second resonance frequency that is different from the first resonance frequency. A signal processing element is configured to control the actuation signals to maintain a first amplitude in the first mode of oscillation, and a second amplitude in the second mode of oscillation.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 11, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Jouni Erkkilä, Tero Sillanpää, Matti Liukku, Anssi Blomqvist
  • Patent number: 10983356
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical waveguide includes a volume of optically transparent material, a first holographic optical element (HOE) and a second holographic optical element, wherein the first HOE and the second HOE are carried by the volume of optically transparent material, and the first HOE is positioned across a width of the volume of optically transparent material from the second HOE. Light enters the optical waveguide and is propagated down a length of the waveguide by reflection between the first HOE and the second HOE. Propagation of the light within the optical waveguide does not require total internal reflection. The optical waveguide may include means to in-couple the light into the waveguide and means to out-couple the light from the waveguide. WHUDs that employ such optical waveguides are also described.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 20, 2021
    Assignee: GOOGLE LLC
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Patent number: 10976705
    Abstract: The present invention relates to a system and method for high quality speckle-free phase-only computer-generated holographic image projection. The present invention more particularly relates to a holographic image display system comprising a spatial light modulator to phase modulate light from at least one light source configured to illuminate said spatial light modulator and to provide a phase hologram and projection optics to project said phase modulated light to generate an image formed by said displayed hologram onto an image plane.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: April 13, 2021
    Assignee: CY Vision Inc.
    Inventors: Erdem Ulusoy, Deniz Mengu, Hakan Urey
  • Patent number: 10976557
    Abstract: Systems, devices, and methods for optical waveguides that are well-suited for use in wearable heads-up displays (WHUDs) are described. An optical waveguide includes a volume of optically transparent material, a first holographic optical element (HOE) and a second holographic optical element, wherein the first HOE and the second HOE are carried by the volume of optically transparent material, and the first HOE is positioned across a width of the volume of optically transparent material from the second HOE. Light enters the optical waveguide and is propagated down a length of the waveguide by reflection between the first HOE and the second HOE. Propagation of the light within the optical waveguide does not require total internal reflection. The optical waveguide may include means to in-couple the light into the waveguide and means to out-couple the light from the waveguide. WHUDs that employ such optical waveguides are also described.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: April 13, 2021
    Assignee: GOOGLE LLC
    Inventors: Stefan Alexander, Douglas Raymond Dykaar, John Otto Vieth, Timothy Paul Bodiya
  • Patent number: 10969575
    Abstract: A scanning microelectromechanical reflector system comprising a reflector with a reflector body, a first cavity vertically aligned with the reflector body above the device plane and a second cavity vertically aligned with the reflector body below the device plane. The reflector also comprises a central attachment point located within a central opening in the reflector body. One or more flexures extend from the sidewalls of the central opening to the central attachment point. The flexures allow the central attachment point to remain stationary in the device plane when actuator units tilt the reflector body out of the device plane. The reflector system comprises a central support structure which extends through the cavity to the central attachment point of the reflector.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: April 6, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Altti Torkkeli, Matti Liukku
  • Patent number: 10969605
    Abstract: A virtual reflective 3D volumetric display device and a method for creating virtual reflective 3D volumetric imagery are disclosed to present virtual 3D volumetric object imagery without head tracking or tracking a person's view or eye positions, and which neither presents refractive images nor requires VR goggles or headsets, but instead presents pure volumetric object imagery appearing in the three-dimensional shapes of objects, which can be simultaneously viewed by multiple viewers who each view the shapes of the virtual 3D volumetric object imagery from their own point of view. The three-dimension volumetric reflection display adapter and standalone screen delivers the appearance of volumetric effect with ease.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: April 6, 2021
    Inventor: Wayne Oliver Evans
  • Patent number: 10960682
    Abstract: An image recording apparatus includes: a laser emitting device configured to emit laser beams emitted from a plurality of laser light-emitting elements; an optical fiber array including a plurality of optical fibers provided corresponding to the laser light-emitting elements and configured to guide the laser beams emitted from the laser light-emitting elements to a recording object that relatively moves with respect to the laser emitting device, laser emitting portions of the respective optical fibers being arrayed in an array form in a predetermined direction; and an image recording unit configured to control the laser emitting device so as to irradiate the recording object which relatively moves with respect to the laser emitting device in a direction different from the predetermined direction, with laser beams via the optical fiber array, to heat the recording object and record an image.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: March 30, 2021
    Assignee: RICOH COMPANY, LTD.
    Inventors: Kazuyuki Uetake, Yoshihiko Hotta, Ichiro Sawamura, Tomomi Ishimi, Yasuroh Yokota
  • Patent number: 10962770
    Abstract: A computer implemented method for controlling camera exposure to augment a wiper system of a sensor enclosure. The computer implemented method can detect a presence of a wiper in one or more images captured by one or more cameras. An exposure time of the one or more cameras can be adjusted. Wiper speed can be adjusted such that wipers move in and out of one or more field of views of the one or more cameras while the one or more cameras are capturing images.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: March 30, 2021
    Assignee: Pony AI Inc.
    Inventors: Zhongnan Hu, Zuoteng Chen, Nengxiu Deng, Cheng Jin, Kai Chen, Yubo Zhang, Xiang Yu, Tiancheng Lou, Jun Peng
  • Patent number: 10955669
    Abstract: Systems, devices, and methods for embedding a diffractive element in an eyeglass lens are described. A method of embedding a diffractive element in an eyeglass lens includes applying a protective layer to a diffractive element, applying an interface layer to the protective layer, and applying a lens layer to the interface layer. The interface layer and the lens layer are each comprised of a resin material that hardens when cured. The interface layer is of a shape and thickness that adheres well to the protective layer after the interface layer is cured. The lens layer is of a shape and thickness that achieves the desired component shape of the lens after the lens layer is cured.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: March 23, 2021
    Assignee: GOOGLE LLC
    Inventors: Nils Johan Fransson, Eric J. Caliston, Arnett Weber, Michael A. T. Fowler, Robin W. Tsen, Darren Ihmels
  • Patent number: 10955670
    Abstract: Systems, devices, and methods for embedding a diffractive element in an eyeglass lens are described. A method of embedding a diffractive element in an eyeglass lens includes applying a protective layer to a diffractive element, applying an interface layer to the protective layer, and applying a lens layer to the interface layer. The interface layer and the lens layer are each comprised of a resin material that hardens when cured. The interface layer is of a shape and thickness that adheres well to the protective layer after the interface layer is cured. The lens layer is of a shape and thickness that achieves the desired component shape of the lens after the lens layer is cured.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: March 23, 2021
    Assignee: GOOGLE LLC
    Inventors: Nils Johan Fransson, Eric J. Caliston, Arnett Weber, Michael A. T. Fowler, Robin W. Tsen, Darren Ihmels
  • Patent number: 10948711
    Abstract: An optical scanning device includes a mirror support including a first surface and a second surface, a mirror for reflecting a laser beam being formed on the first surface; a driving beam that includes a beam extending in a direction orthogonal to a predetermined axis and is connected to the mirror support; a driving source that is formed on a surface of the beam and causes the mirror support to rotate around the predetermined axis; and a rib formed on the second surface of the mirror support at a position corresponding to the mirror. The first surface of the mirror support includes an area where the mirror is formed and an exposed area where the first surface is exposed.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: March 16, 2021
    Assignee: MITSUMI ELECTRIC CO., LTD.
    Inventor: Kensuke Yamada
  • Patent number: 10951867
    Abstract: A scanning type display device includes a light source that includes multiple rows and columns of light emitters. The display device also includes a rotatable mirror that projects light to different areas of an image field as the mirror rotates. There can be a redundant number to light emitters in the light source to increase the brightness of the pixels in the image field. A data driver may replicate and shift data values among light emitters of the same columns. The light emitters may operate in conjunction with the mirror in a synchronized manner. Owing to the shift in data value and the rotation of the mirror, the mirror may first project light from a first light emitter to a pixel and may then project light from a second light emitter with the same brightness level to the same pixel. The shifting may continue for additional light emitters.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: March 16, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Ilias Pappas, William Thomas Blank
  • Patent number: 10942260
    Abstract: An illustrative example detection device includes a source of radiation, at least one mirror that reflects radiation from the source along a field of view having a first width, at least one optic component that is configured to refract radiation reflected from the at least one mirror, and at least one actuator that selectively moves the optic component between a first position and a second position. In the first position the optic component is outside of the field of view and does not refract any of the radiation reflected from the at least one mirror. In the second position the optic component is in the field of view and refracts at least some of the radiation reflected from the at least one mirror. The field of view has a second, larger width when the at least one optic component is in the second position.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: March 9, 2021
    Assignee: Aptiv Technologies Limited
    Inventor: Yew Kwang Low
  • Patent number: 10928558
    Abstract: The disclosed optical lens assemblies may include a deformable element, a structural support element, a substantially transparent deformable medium positioned between the deformable element and the structural support element, a compliant peripheral component positioned between peripheral portions of the deformable element and the structural support element, and an actuator configured to displace at least a portion of the compliant peripheral component to deform the deformable element and change at least one optical property of the optical lens assembly. Related head-mounted displays and methods of fabricating such optical lens assemblies are also disclosed.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: February 23, 2021
    Assignee: Facebook Technolgies, LLC
    Inventors: John M. Cooke, Katherine Marie Smyth, Andrew John Ouderkirk