Patents Examined by Jezia Riley
  • Patent number: 11860076
    Abstract: The present invention relates to methods and systems for isolation of species in semi-permeable capsules and processing of encapsulated species through series of steps and/or reactions. To produce capsules, first aqueous two-phase system (ATPS) droplets are generated using microfluidics system and then the hydrogel shell layer is hardened by inducing polymerization. As exemplified in this invention to achieve concentric ATPS droplet formation density-matched PEGDA and Dextran polymer solutions can be used. Once a capsule is formed, its composition can be changed by adding new reagents or replacing out old ones (e.g. by resuspending capsules in desired aqueous solution). The hydrogel shell of semi-permeable capsules can be dissolved at selected step during multi-step procedures in order to release the encapsulated species. The present invention exemplifies the isolation of individual cells within capsules and using the encapsulated cells for genotypic and phenotypic analysis.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: January 2, 2024
    Assignees: Vilnius University, Droplet Genomics
    Inventors: Linas Mazutis, Greta Stonyte, Karolis Leonavicius, Ausra Zelvyte
  • Patent number: 11845980
    Abstract: Emulsion compositions are provided herein. Also provided herein are kits containing one or more emulsion compositions or components for making such emulsion compositions. Also provided herein are methods of using such emulsion compositions, such as for amplification of target nucleic acids in emulsion droplets.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: December 19, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Yi Xue, Joshua Ritchey, Robert Meltzer
  • Patent number: 11834551
    Abstract: The present invention provides water soluble photoactive macromolecular complexes and methods for detecting an analyte in a sample by using a binding agent conjugated to a water soluble photoactive macromolecule.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: December 5, 2023
    Assignee: Beckman Coulter, Inc.
    Inventors: Arunkumar Easwaran, Sergei Gulnik
  • Patent number: 11835526
    Abstract: The present invention provides, among other aspects, functionalized chromophoric polymer dots comprising a hydrophobic core and a hydrophilic cap, and bioconjugates thereof. Also provided are improved methods for preparing functionalized chromophoric polymer dots. Methods for in vivo imaging and molecular labeling are also disclosed.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: December 5, 2023
    Assignees: University of Washington, Clemson University Research Foundation
    Inventors: Daniel T. Chiu, Changfeng Wu, Jason McNeill, Jiangbo Yu
  • Patent number: 11827931
    Abstract: Embodiments of the present disclosure relate to methods of preparing growing polynucleotides using nucleotide molecules with a 3? AOM blocking group. Also provided herein are kits related to such methods.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: November 28, 2023
    Assignee: Illumina Cambridge Limited
    Inventors: Antoine Francais, Elena Cressina, Adam Culley, Angelica Mariani, Xiaolin Wu, Xiaohai Liu
  • Patent number: 11814677
    Abstract: Provided herein are methods and systems for sensitive and multiplexed in situ analysis of samples such as biological samples using cleavable hapten linked targeting agents and cleavable detectably-labeled hapten-binding agents. In particular, provided herein are methods for multiplexed single-cell in situ biomolecule profiling in samples, including fixed or fresh tissues, and also allows the investigation of the different cell compositions and their spatial organizations in intact tissues through consecutive cycles of probe hybridization, fluorescence imaging, and signal removal.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 14, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Jia Guo, Joshua LaBaer
  • Patent number: 11807904
    Abstract: Reaction mixtures are provided having at least a first nucleotide analog and a second nucleotide analog that produce signals in response to excitation illumination. The signals produced by the analogs have peaks at the same wavelengths, but have distinct signal intensities. The distinct intensities allow for identification of the analogs in nucleic acid sequencing. In some embodiments, FRET-labeled compounds are provided. In certain embodiments, FRET-labeled nucleotide analogs are used, for example, in DNA sequencing or RNA sequencing.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: November 7, 2023
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Xiangxu Kong, Gene Shen
  • Patent number: 11802313
    Abstract: Methods are disclosed for detecting peripheral mitochondrial DNA damage and dysfunction. Methods are also disclosed that utilize blood samples to detect a neurodegenerative disease, such as Parkinson's disease, and determine the efficacy of therapy.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: October 31, 2023
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Laurie H. Andolina, John T. Greenamyre, Sruti Shiva
  • Patent number: 11796531
    Abstract: Systems for detecting fluorescence from a molecule comprising an ion-impermeable film comprising at least one ion-conducting nanopore; a first and second liquid reservoir separated by the film; a means to induce movement of the molecule from the first reservoir to the second reservoir via the nanopore; a light source capable of exciting the molecule to emit fluorescence, wherein the light source shines into the second reservoir; a metallic layer adhered to the film by an adhesion layer and comprising a nanowell structure located adjacent to the nanopore; and a detector configured to detect the fluorescence emitted by the molecule are provided. Methods of use of the systems are also provided.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 24, 2023
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Amit Meller, Ossama Assad, Tal Gilboa, Joshua Spitzberg
  • Patent number: 11795191
    Abstract: This disclosure provides systems and methods for sequencing nucleic acids using nucleotide analogues and translocation of tags from incorporated nucleotide analogues through a nanopore. In aspects, this disclosure is related to composition, method, and system for sequencing a nucleic acid using tag molecules and detection of translocation through a nanopore of tags released from incorporation of the molecule.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: October 24, 2023
    Assignees: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Jingyue Ju, Shiv Kumar, Chuanjuan Tao, Minchen Chien, James J. Russo, John J. Kasianowicz, Joseph W. F. Robertson
  • Patent number: 11787947
    Abstract: The present disclosure is directed to designing dyes and methods to alter the parameters controlling the dipole-dipole coupling of dyes bound to a nucleotide oligomer architecture, which are used to propagate excitons for use in next generation room temperature quantum information systems. The disclosed dyes and methods are directed to changing the dye stability, symmetry, overlap, and steric hindrance of the dyes to fine tune aggregate systems.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: October 17, 2023
    Assignee: Boise State University
    Inventors: William B. Knowlton, Bernard Yurke, Ryan D. Pensack, Paul H. Davis
  • Patent number: 11787930
    Abstract: A flow cell includes a support and a heteropolymer attached to the support. The heteropolymer includes an acrylamide monomer including an attachment group to react with a functional group attached to a primer, and a monomer including a stimuli-responsive functional group. The monomer including the stimuli-responsive functional group may be pH-responsive, temperature-responsive, saccharide-responsive, nucleophile-responsive, and/or salt-responsive.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: October 17, 2023
    Assignees: Illumina Inc., Illumina Cambridge Limited
    Inventors: Wayne N. George, Ludovic Vincent, Andrew A. Brown, Mathieu Lessard-Viger
  • Patent number: 11773438
    Abstract: Some embodiments of the present application relate to novel modified nucleotide linkers for increasing the efficiency of nucleotide incorporation in Sequencing by Synthesis applications. Methods of preparing these modified nucleotide linkers are also provided herewith.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: October 3, 2023
    Assignee: Illumina Cambridge Limited
    Inventors: Xiaolin Wu, Xiaohai Liu
  • Patent number: 11773133
    Abstract: Compositions and methods for optically-verified, sequence-controlled polymer synthesis are described.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 3, 2023
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Andrew P. Magyar, Melissa M. Sprachman
  • Patent number: 11767523
    Abstract: Provided herein, in some embodiments, are methods, compositions and kits for large-scale production of long single-stranded DNA in solution.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: September 26, 2023
    Assignee: Dana-Farber Cancer Institute, Inc.
    Inventors: Elisha Krieg, William M. Shih
  • Patent number: 11753635
    Abstract: Methods and systems and related compositions for separating through a solid matrix a mixture comprising a nucleic acid together with a target compound having a water solubility equal to or greater than 0.01 mg per 100 mL, which can be used for managing fluid flow, biochemical reactions and purification of the nucleic acid or other target analytes.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: September 12, 2023
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Rustem Ismagilov, Erik Jue, Daan Witters
  • Patent number: 11739114
    Abstract: The present disclosure provides a solid phase method of making oligonucleotides via sequential coupling cycles including at least one coupling of a dinucleotide dimer subunit to a free 3?-terminal group of a growing chain. The oligonucleotides include at least two nucleoside subunits joined by a N3??P5? phosphoramidate linkage. The method may include the steps of (a) deprotecting the protected 3? amino group of a terminal nucleoside attached to a solid phase support, said deprotecting forming a free 3? amino group; (b) contacting the free 3? amino group with a 3?-protected amino-dinucleotide-5?-phosphoramidite dimer in the presence of a nucleophilic catalyst to form an internucleoside N3??P5? phosphoramidite linkage; and (c) oxidizing (e.g., sulfurizing) the linkage. The compositions produced by the subject methods may include a reduced amount of one or more (N?x) oligonucleotide products. Also provided are pharmaceutical compositions including the subject oligonucleotide compositions.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: August 29, 2023
    Assignee: Geron Corporation
    Inventor: Premchandran H. Ramiya
  • Patent number: 11739378
    Abstract: The present disclosure relates to compositions and methods based on polypeptide-tagged nucleotide, and the use of such polypeptide-tagged nucleotides in nanopore devices and methods.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: August 29, 2023
    Assignees: Roche Sequencing Solutions, Inc., Roche Molecular Systems, Inc.
    Inventors: Frank Bergmann, Christoph Seidel, Andrew Trans, Dmitriy Gremyachinskiy, Hannes Kuchelmeister, Lars Hillringhaus
  • Patent number: 11733147
    Abstract: In an example, a flow cell includes a substrate, a selectively removable porous molecular network on the substrate and defining exposed substrate regions, and sequencing surface chemistry on at least some of the exposed regions. The sequencing surface chemistry is selected from the group consisting of i) an activated pad, a polymer layer attached to the activated pad, and a primer attached to the polymer layer; or ii) a nanostructure and an enzyme attached to the nanostructure.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: August 22, 2023
    Assignee: Illumina Cambridge Limited
    Inventor: Xavier von Hatten
  • Patent number: 11732294
    Abstract: Provided herein are compositions, methods and systems relating to libraries of polynucleotides such that the libraries allow for accurate and efficient hybridization after binding to target sequences. Further provided herein are probes, blockers, additives, buffers, and methods that result in improved hybridization. Such compositions and methods are useful for improvement of Next Generation Sequencing applications, such as reducing off-target binding or reducing workflow times.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: August 22, 2023
    Assignee: Twist Bioscience Corporation
    Inventors: Ramsey Ibrahim Zeitoun, Siyuan Chen, Richard Gantt, Kristin D. Butcher, E. Hutson Chilton