Patents Examined by Jiong-Ping Lu
  • Patent number: 10942446
    Abstract: Disclosed is a method for cleaning a photo mask. The method includes a pre-treatment operation of wetting a chemical on an entire surface of the photo mask in a state in which the photo mask is stopped, and a cleaning operation of supplying the chemical to a pattern area of the photo mask in a state in which the photo mask is rotated.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: March 9, 2021
    Assignee: SEMES CO. LTD.
    Inventors: Seong Soo Lee, Jeong Yeong Park, Sung Bum Park, Byung Chul Kang
  • Patent number: 10937664
    Abstract: Methods and systems for surface modification are described. In an embodiment, a method of etching includes providing a substrate having a device structure, portions of which are identified for modification. Such a method may also include passivating target surfaces of the device structure by exposing the device structure to a gas-phase composition at a processing pressure equal to or greater than 100 mTorr to form a protection layer on the target surfaces. Other embodiments of a method may include providing a substrate having a device structure, portions of which identified for removal. Such methods may further include passivating target surfaces of the device structure by exposing the device structure to a gas-phase composition, wherein the ratio of the radical content to the ion content exceeds 10-to-1.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: March 2, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Cedric Thomas, Andrew Nolan, Alok Ranjan
  • Patent number: 10928145
    Abstract: Methods and systems for controlling temperatures in plasma processing chamber via pulsed application of heating power and pulsed application of cooling power. In an embodiment, fluid levels in each of a hot and cold reservoir coupled to the temperature controlled component are maintained in part by a coupling each of the reservoirs to a common secondary reservoir. Heat transfer fluid is pumped from the secondary reservoir to either the hot or cold reservoir in response to a low level sensed in the reservoir. In an embodiment, both the hot and cold reservoirs are contained in a same platform as the secondary reservoir with the hot and cold reservoirs disposed above the secondary reservoir to permit the secondary reservoir to catch gravity driven overflow from either the hot or cold reservoir.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: February 23, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Fernando Silveira, Brad L. Mays
  • Patent number: 10920143
    Abstract: An etching method that includes using the etching liquid composition containing (A) 0.1 to 15 mass % of hydrogen peroxide, (B) 0.01 to 1 mass % of a fluoride ion source, (C) 2-hydroxyethane sulfonic acid or a salt thereof in an amount of 0.1 to 20 mass % in terms of organic sulfonic acid, (D) 0.01 to 5 mass % of at least one compound selected from the group consisting of azole-based compounds and compounds having a structure that has a 6-membered heterocycle including at least one nitrogen atom and three double bonds, and (E) water, is provided.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: February 16, 2021
    Assignee: ADEKA CORPORATION
    Inventors: Junro Ishizaki, Daisuke Omiya
  • Patent number: 10920104
    Abstract: Provided are an abrasive, a polishing composition, and a polishing method capable of polishing the surface of an alloy or metal oxide at a sufficient polishing removal rate and providing a high-quality mirror surface. The abrasive contains alumina having an ?-conversion rate of 80% or more and having a 50% particle diameter, in a volume-based cumulative particle diameter distribution, of 0.15 ?m or more to 0.35 ?m or less. The polishing composition contains this abrasive and has a pH of 7 or less. These abrasive and polishing composition are used for polishing polishing objects containing at least one of an alloy and a metal oxide.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: February 16, 2021
    Assignee: FUJIMI INCORPORATED
    Inventors: Hitoshi Morinaga, Kazusei Tamai, Maiko Asai, Yuuichi Ito, Kyosuke Tenko, Toru Kamada
  • Patent number: 10923332
    Abstract: A plasma processing method is performed in a state where a focus ring is disposed on a supporting table to surround an edge of a substrate by a plasma processing apparatus. The plasma processing apparatus includes a chamber and the supporting table provided in the chamber and configured to support the substrate mounted thereon. The plasma processing method includes forming an organic film on the focus ring to reduce a difference between a position of an upper surface of the focus ring in a vertical direction and a reference position, and performing plasma processing on the substrate after the formation of the organic film.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: February 16, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Ryuichi Asako, Masahiro Tabata, Takao Funakubo
  • Patent number: 10920141
    Abstract: Compositions useful for the selective removal of titanium nitride and/or photoresist etch residue materials relative to metal conducting, e.g., cobalt, ruthenium and copper, and insulating materials from a microelectronic device having same thereon. The removal compositions contain at least one oxidant and one etchant, may contain various corrosion inhibitors to ensure selectivity.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: February 16, 2021
    Assignee: ENTEGRIS, INC.
    Inventors: Li-Min Chen, Steven Lippy, Emanuel I Cooper, Lingyan Song
  • Patent number: 10920120
    Abstract: A ceria composite particle dispersion has ceria composite particles having an average particle size of 50 to 350 nm and having the features described below. Each ceria composite particle has a mother particle, a cerium-containing silica layer on the surface thereof, and child particles dispersed inside the cerium-containing silica layer, the mother particles being amorphous silica-based and the child particles being crystalline ceria-based. The child particles have a coefficient of variation (CV value) in a particle size distribution of 14 to 40%. The ceria composite particles have a mass ratio of silica to ceria of 100:11-316. Only the crystal phase of ceria is detected when the ceria composite particles are subjected to X-ray diffraction. The average crystallite size of the crystalline ceria measured by subjecting the ceria composite particles to X-ray diffraction is 10 to 25 nm.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: February 16, 2021
    Assignee: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Michio Komatsu, Yuji Tawarazako, Shinya Usuda, Kazuhiro Nakayama, Shota Kawakami
  • Patent number: 10914004
    Abstract: A method of depositing a thin film having a desired etching characteristic while improving a loss amount and loss uniformity of a lower film includes, on the semiconductor substrate and the pattern structure: a first operation of depositing a portion of the thin film by repeating a first cycle comprising (a1) a source gas supply operation, (b1) a reactant gas supply operation, and (c1) a plasma supply operation for a certain number of times; a second operation of depositing a remaining portion of the thin film by repeating a second cycle comprising (a2) a source gas supply operation, (b2) a reactant gas supply operation, and (c2) a plasma supply operation for a certain number of times after the first operation, wherein a supply time of the source gas supply operation (a1) is longer than a supply time of the source gas supply operation (a2).
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: February 9, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: ManSu Lee, SungKyu Kang, EunSook Lee, MinSoo Kim, SeungWoo Choi
  • Patent number: 10910227
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: February 2, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Amit Kumar Bansal, Ganesh Balasubramanian, Jianhua Zhou, Ramprakash Sankarakrishnan, Mohamad A. Ayoub, Jian J. Chen
  • Patent number: 10903085
    Abstract: There is provided a method for etching an organic region of a substrate. In the method, an organic film is formed on a surface in a chamber of a plasma processing apparatus. The surface extends out around a region where the substrate is to be disposed in the chamber of the plasma processing apparatus, and the organic region is etched by chemical species from plasma in the chamber.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: January 26, 2021
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Ryuichi Asako, Masahiro Tabata, Takao Funakubo
  • Patent number: 10899945
    Abstract: Use of a chemical mechanical polishing (CMP) composition (Q) for chemical mechanical polishing of a substrate (S) comprising (i) cobalt and/or (ii) a cobalt alloy and (iii) Ti N and/or TaN, wherein the CMP composition (Q) comprises (E) Inorganic particles (F) at least one organic compound comprising an amino-group and an acid group (Y), wherein said compound comprises n amino groups and at least n+1 acidic protons, wherein n is a integer?1. (G) at least one oxidizer in an amount of from 0.2 to 2.5 wt.-% based on the total weight of the respective CMP composition, (H) an aqueous medium wherein the CMP composition (Q) has a pH of more than 6 and less than 9.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: January 26, 2021
    Assignee: BASF SE
    Inventors: Robert Reichardt, Max Siebert, Yongqing Lan, Michael Lauter, Sheik Ansar Usman Ibrahim, Reza M. Golzarian, Te Yu Wei, Haci Osman Guevenc, Julian Proelss, Leonardus Leunissen
  • Patent number: 10896824
    Abstract: Methods are disclosed that illuminate etch solutions to provide controlled etching of materials. An etch solution (e.g., gaseous, liquid, or combination thereof) with a first level of reactants is applied to the surface of a material to be etched. The etch solution is illuminated to cause the etch solution to have a second level of reactants that is greater than the first level. The surface of the material is modified (e.g., oxidized) with the illuminated etch solution, and the modified layer of material is removed. The exposing and removing can be repeated or cycled to etch the material. Further, for oxidation/dissolution embodiments the oxidation and dissolution can occur simultaneously, and the oxidation rate can be greater than the dissolution rate. The material can be a polycrystalline material, a polycrystalline metal, and/or other material. One etch solution can include hydrogen peroxide that is illuminated to form hydroxyl radicals.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: January 19, 2021
    Assignee: Tokyo Electron Limited
    Inventors: Omid Zandi, Jacques Faguet
  • Patent number: 10882739
    Abstract: Technologies are described for methods and systems effective for etching nanostructures in a substrate. The methods may comprise depositing a patterned block copolymer on the substrate. The patterned block copolymer may include first and second polymer block domains. The methods may comprise applying a precursor to the patterned block copolymer to generate an infiltrated block copolymer. The precursor may infiltrate into the first polymer block domain and generate a material in the first polymer block domain. The methods may comprise applying a removal agent to the infiltrated block copolymer to generate a patterned material. The removal agent may be effective to remove the first and second polymer block domains from the substrate. The methods may comprise etching the substrate. The patterned material on the substrate may mask the substrate to pattern the etching. The etching may be performed under conditions to produce nanostructures in the substrate.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: January 5, 2021
    Assignee: BROOKHAVEN SCIENCE ASSOCIATES, LLC.
    Inventors: Charles T. Black, Atikur Rahman, Matthew Eisaman, Ahsan Ashraf
  • Patent number: 10886134
    Abstract: A polishing method for polishing by sliding a semiconductor silicon wafer, held by a polishing head, against a polishing pad attached to a turn table while supplying a polishing agent, wherein the semiconductor silicon wafer is subjected to primary polishing, secondary polishing, and final polishing in turn, the secondary polishing comprises polishing by an alkaline based polishing agent which includes free abrasive grains and does not include a water-soluble polymer agent, and subsequent rinse polishing by a polishing agent which includes a water-soluble polymer agent and the rinse polishing includes two stages of polishing, wherein, after performing a first stage of the rinse polishing while supplying a polishing agent which includes a water-soluble polymer agent, a second stage of the rinse polishing is performed while supplying a switched polishing agent whose water-soluble polymer agent has an average molecular weight larger than the polishing agent of the first stage.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: January 5, 2021
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventor: Kazuaki Aoki
  • Patent number: 10875339
    Abstract: Methods, systems, and compositions to produce high resolution, highly scalable patterns on a variety of substrates. A high resolution sacrificial negative of the desired pattern in inkjet printed on the substrate with an inkjet printable ink. A viscous solution is coated or deposited over the negative pattern and substrate. The solution is stabilized such as by drying and adheres to the substrate. The sacrificial negative is removed, leaving the dried solution in the high resolution form factor defined by the removed negative. This allows the solution to be formulated without regard to meeting inkjet printing requirements but results in a high resolution final positive pattern on the substrate.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: December 29, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jonathan Claussen, John Hondred, Loreen Stromberg
  • Patent number: 10879067
    Abstract: In one embodiment, a pattern forming method includes forming a first film on a substrate. The method further includes supplying energy to the first film to form a first region to which the energy have been supplied, and a second region including at least a region to which the energy has not been supplied. The method further includes impregnating at least the first region out of the first and second region with metal atoms. The method further includes developing the first film after impregnating the first region with the metal atoms to remove the second region while leaving the first region.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: December 29, 2020
    Assignee: Toshiba Memory Corporation
    Inventors: Seiji Morita, Takashi Sato, Ryosuke Yamamoto
  • Patent number: 10872780
    Abstract: Disclosed is the invention of a dry etching agent composition including: 1,3,3,3-tetrafluoropropene; and a hydrochlorofluorocarbon represented by CHxClyFz (wherein x, y and z are integers of 1 or greater and x+y+z=4), wherein a concentration of the hydrochlorofluorocarbon relative to 1,3,3,3-tetrafluoropropene is 3 volume ppm or greater to less than 10000 volume ppm, and a use of this dry etching agent composition. An object of the present invention is to suppress corrosion of storage container, pipes and an etching chamber by suppressing generation of acidic substances by improving storage stability of HFO-1234ze without losing excellent etching characteristics of HFO-1234ze.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: December 22, 2020
    Assignee: Central Glass Company, Limited
    Inventors: Hiroyuki Oomori, Akifumi Yao, Isamu Mori
  • Patent number: 10859910
    Abstract: Provided herein are encoded microcarriers for analyte detection in multiplex assays. The microcarriers are encoded with an analog code for identification and include a capture agent for analyte detection. Also provided are methods of making the encoded microcarriers disclosed herein. Further provided are methods and kits for conducting a multiplex assay using the microcarriers described herein.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 8, 2020
    Assignee: PLEXBIO CO., LTD.
    Inventors: Dean Tsao, Chin-Shiou Huang, Yao-Kuang Chung
  • Patent number: 10854460
    Abstract: Processes are provided herein for deposition of organic films. Organic films can be deposited, including selective deposition on one surface of a substrate relative to a second surface of the substrate. For example, polymer films may be selectively deposited on a first metallic surface relative to a second dielectric surface. Selectivity, as measured by relative thicknesses on the different layers, of above about 50% or even about 90% is achieved. The selectively deposited organic film may be subjected to an etch process to render the process completely selective. Processes are also provided for particular organic film materials, independent of selectivity.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: December 1, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Eva E. Tois, Hidemi Suemori, Viljami J. Pore, Suvi P. Haukka, Varun Sharma