Patents Examined by Joel F Brutus
  • Patent number: 11896779
    Abstract: A magnetic resonance compatible catheter. The catheter incorporates directional high intensity ultrasound. The catheter may include imaging coils visible through magnetic resonance imaging. The location and placement of the catheter may be controlled by steering wires within lumen in the catheter guided by the location information from the magnetic resonance imaging.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: February 13, 2024
    Assignee: Acoustic Medsystems, Inc.
    Inventors: Everette C. Burdette, Bruce M. Komadina, Emery M. Williams
  • Patent number: 11896253
    Abstract: The present invention is directed to a novel target detecting device comprising an excitation transducer generating a low frequency pulses of weakly focused ultrasonic energy and a sensing transducer. The present invention also includes a method of aligning a treatment transducer to a target by mapping the target in situ by sending a low frequency ultrasound signal and receiving reflected signals from the target. These inventions provide a simpler way of determining the location of a target and aligning a treatment transducer without the need to generate and interpret an image and then translate the image back onto the target.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: February 13, 2024
    Assignee: Applaud Medical, Inc.
    Inventors: William Behnke-Parks, Daniel Laser
  • Patent number: 11883118
    Abstract: A surgical navigation system may include a processor and a display. The processor may receive a patient image and sensor data captured by a sensor, receive a medical image, generate a hologram of the medical image, perform coregistration between the patient image and the hologram, superimpose the hologram on the patient image, and display the superimposed image. Coregistration may be performed manually via a user interaction, or automatically based on one or more fiducials in the medical image and sensor data related to the fiducials. The system may monitor a change in the environment and update the display correspondingly. For example, the system may monitor a movement of a body of the patient, monitor the size of an organ of the patient as the organ is being under operation, or a movement of the surgical instrument. The sensor may be an augmented reality (AR) sensor in an AR device.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: January 30, 2024
    Assignees: United States Government As Represented By The Department Of Veterans Affairs, Hennepin Healthcare Systems, Inc.
    Inventors: Uzma Samadani, Abdullah Bin Zahid, David P. Darrow
  • Patent number: 11883116
    Abstract: A tracker, a surgical navigation system with the tracker, and a method of operating the tracker are described. The tracker comprises a first switch configured to be operated between a first switch configuration and a second switch configuration. The tracker also comprises one or more sources of electromagnetic radiation configured to selectively emit electromagnetic radiation with a first radiation characteristic or a second radiation characteristic. The tracker further comprises electrical circuitry configured to selectively control the one or more sources of electromagnetic radiation to emit electromagnetic radiation having the first radiation characteristic in the first switch configuration and to emit electromagnetic radiation having the second radiation characteristic in the second switch configuration, wherein the second radiation characteristic is different from the first radiation characteristic.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: January 30, 2024
    Assignee: Stryker European Operations Limited
    Inventors: Fadi Ghanam, Fabian Riegelsberger, David Hofmann, Reinhold Zimmermann, Andreas Reutter
  • Patent number: 11883182
    Abstract: A system and a method is provided for assessing motion of a biological tissue of a subject including one or more superficial biological layers and a targeted biological layer. An optical perturbation is introduced within the one or more superficial biological layers but not within the targeted biological layer. A set of optical signal data is acquired preceding, during, or following the optical perturbation and, using the set of optical signal data, a set of optical characteristics is determined that is representative of light transiting the biological layers. Using the set of optical characteristics and a model of the biological layers, a target optical signal consistent with a target biological layer is separated and a movement of the desired biological tissue is determined using the target optical signal.
    Type: Grant
    Filed: July 12, 2022
    Date of Patent: January 30, 2024
    Assignee: The General Hospital Corporation
    Inventors: Quan Zhang, Gary Strangman
  • Patent number: 11877826
    Abstract: In some aspects, the present disclosure provides methods for identifying a disease in an epithelial tissue of a subject. Methods for identifying a disease in an epithelial tissue comprise the generation of a depth profile of the epithelial tissue using signals generated from the tissue by pulses of light directed towards a surface of the epithelial tissue. In some aspects, the present disclosure provides apparatuses consistent with the methods herein.
    Type: Grant
    Filed: October 6, 2021
    Date of Patent: January 23, 2024
    Assignee: ENSPECTRA HEALTH, INC.
    Inventors: Gabriel Sanchez, Fred Landavazo, IV, Scott Delp, Kathryn Montgomery
  • Patent number: 11877809
    Abstract: Disclosed is a computer-implemented of adapting a biomechanical model of an anatomical body part of a patient to a current status of the patient. The method encompasses determination of a currently executed step of a workflow such as a medical intervention, the result of the determination serving as a basis for adapting and/or updating a biomechanical model of an anatomical body part to the corresponding current status of the patient. The determination of the current workflow step may also be used as basis for controlling an imaging device for tracking entities around the patient or for imaging the anatomical body part or acquiring further data or for urging the user to perform a specific action such as acquisition of information using a tracked instrument such as a pointer. The biomechanical model has been generated from atlas data.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: January 23, 2024
    Assignee: BRAINLAB AG
    Inventors: Stefan Vilsmeier, Andreas Blumhofer, Jens Schmaler, Patrick Hiepe
  • Patent number: 11872027
    Abstract: An apparatus for emitting a field comprising a core, a conductive winding with a first end, a second end, and an intermediate portion, where the conductive winding surrounds a portion of the core and is wound about a winding axis, a protrusion for aligning the apparatus where the protrusion is parallel with the winding axis, and a conductive connector extending from the conductive winding, wherein the conductive connector is electrically coupled with the conductive winding at the intermediate portion.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: January 16, 2024
    Assignee: St. Jude Medical International Holding S.รก r.l.
    Inventor: Ryan K. Buesseler
  • Patent number: 11871997
    Abstract: A system for determining a location for a surgical procedure, having a 3D spatial mapping camera, the 3D spatial mapping camera configured to map a bone. The system also includes a marker attached to a distal end section of the bone, such that the 3D spatial mapping camera is configured to capture a plurality of images of the marker as the bone is rotated in a non-linear path. The images also include data identifying a location of the marker. The system also includes a computer system that receives the data from the images captured by the 3D spatial mapping camera and determines a location of a mechanical axis of the bone, and a mixed reality display, where the computer system is configured to send the location of the mechanical axis to the mixed reality display and the mixed reality display is configured to provide a virtual display of the mechanical axis of the bone.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: January 16, 2024
    Inventors: Russell Todd Nevins, David Jon Backstein, Bradley H. Nathan
  • Patent number: 11864843
    Abstract: An image diagnosis support apparatus includes a shape information acquiring unit that acquires shape information including a size of a diameter and a route of a coronary vein for at least one coronary vein from a three-dimensional image including a heart, a distal position acquiring unit that acquires a most distal position into which an electrode lead wire having a plurality of electrodes arranged at predetermined electrode intervals is able to be inserted based on the shape information, and information indicating a size of a diameter of the electrode lead wire, and a candidate position acquiring unit that acquires at least one piece of information indicating candidate positions of the plurality of electrodes which are candidates for positioning the plurality of electrodes in the coronary vein based on the distal position and positional information indicating arrangement positions of the plurality of electrodes.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: January 9, 2024
    Assignee: FUJIFILM Corporation
    Inventor: Yu Hasegawa
  • Patent number: 11864944
    Abstract: A method for determining a predicted risk level of a clinical endpoint for a predetermined time period for a patient is provided by the present disclosure. The method includes receiving video frames of a heart, the video frames being associated with the patient, receiving electronic health record data including a number of variables associated with the patient, providing the video frames and the electronic health record data to the trained neural network, receiving a risk score from the trained neural network, and outputting a report based on the risk score to at least one of a display or a memory.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: January 9, 2024
    Assignee: Geisinger Clinic
    Inventors: Brandon K. Fornwalt, Christopher Haggerty, Alvaro Ulloa Cerna, Christopher Good
  • Patent number: 11864883
    Abstract: An acoustic wave measurement apparatus includes: an image display unit that displays an acoustic wave image; a measurement target designation receiving unit that receives designation of a measurement target; a position designation receiving unit that receives designation of a position of a measurement target on the acoustic wave image displayed on the image display unit; a measurement method information receiving unit that receives measurement method information indicating a measurement method; a detection measurement algorithm setting unit that sets a detection measurement algorithm based on the measurement target received by the measurement target designation receiving unit and the measurement method information received by the measurement method information receiving unit; and a measurement unit that detects the measurement target based on the received position and the detection measurement algorithm and performs measurement for the detected measurement target.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: January 9, 2024
    Assignee: FUJIFILM Corporation
    Inventor: Tsuyoshi Matsumoto
  • Patent number: 11857269
    Abstract: Methods and systems for performing robotically-assisted surgery in conjunction with intra-operative imaging. A method includes moving a robotic arm with respect to a patient and an imaging device to move an end effector of the robotic arm to a pre-determined position and orientation with respect to the patient based on imaging data of the patient obtained by the imaging device. The robotic arm maintains the end effector in the pre-determined position and orientation with respect to the patient and does not collide with the imaging device or with the patient when the imaging device moves with respect to the patient.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: January 2, 2024
    Assignee: Mobius Imaging, LLC
    Inventors: Eugene A. Gregerson, Paul Sebring, Russell Stanton, Scott Coppen, Adeline Harris, Todd Furlong, Jeff Baker
  • Patent number: 11850002
    Abstract: Pre-surgical planning can use a three-dimensional model of an anatomical structure having a plurality of fiduciary points and a surgical mark integrated into the three-dimensional model using a contrast material. A model image of the three-dimensional model can be superimposed with a diagnostic image of the anatomical structure using the plurality of fiduciary points in order to create a superimposed image.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: December 26, 2023
    Assignee: International Business Machines Corporation
    Inventor: Eugeniusz Walach
  • Patent number: 11850006
    Abstract: Devices and methods for ultrasound image-guided percutaneous, cardiac valve implantation and repair comprise, in combination, a plurality of devices including but not limited to an ultrasound-image guided catheter, a pericardial sheath, a cardiac-valve delivery system and an ascending aortic filter. An image-guided catheter is utilized to introduce via an introducer needle and a guide wire a pericardium portal for permitting entry from the chest wall to inside the pericardial space between the pericardial outer lining and inner lining. The pericardium portal permits the use of ultrasound vision to locate a site proximate the left ventricular apex, for introduction of a sheath via a .myocardium needle into the left ventricular space at an angle and avoiding any coronaries or vessels. A first delivery system permits placement of at least one aortic filter which collects any emboli, particulate matter, plaque and prevents such matter travelling via the ascending aorta to the brain, causing a stroke.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: December 26, 2023
    Assignee: INNOSCION LLC
    Inventor: Theodore P. Abraham
  • Patent number: 11850023
    Abstract: A magnetic resonance tomography unit and a method is provided in which a patient couch may be moved in relation to the longitudinal direction into the patient tunnel in the transversal direction into a left-hand side extreme position and an opposite-lying right-hand side extreme position. Using an image acquisition facility in the left-hand side extreme position a right-hand side part is acquired and in the right-hand side extreme position a left-hand side part of the outer contour of the predetermined object is acquired. Using the image acquisition facility, the outer contour of the object is subsequently created from the left-hand side part of the outer contour and also from the right-hand side part of the outer contour.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: December 26, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Elena Nioutsikou, Manuel Schneider, Martin Requardt
  • Patent number: 11844629
    Abstract: A smart system and methods for coupling a medical transporter apparatus with an imaging apparatus, involving: a smart docking module comprising at least one coupler responsive to a controller operable by a set of executable instructions, the smart docking module comprising a non-magnetic material; and the smart docking module configured by the controller to automatically perform at least one of: position, dock, engage, latch, lock, interlock, release, emergency-release, quick-release, disengage, emergency-disengage, and quick-disengage the medical transporter apparatus in relation to the imaging apparatus.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: December 19, 2023
    Inventors: Dan Gavin Harrison, Mark Tullio Morreale, William Wai-Leung Lau, Murtasim Syed, Genevieve Rodrigue, Aryeh Benjamin Taub
  • Patent number: 11826135
    Abstract: In a method and system for automatically positioning a region of interest of a patient for a medical imaging examination in an isocenter of a medical imaging apparatus, the region of interest of the patient is brought into a patient receiving region of the medical imaging examination for a position-determination measurement, a position-determination measurement is performed to capture position-determination image data, the position-determination image data is analyzed to determine a position of the region of interest of the patient from the position-determination image data, and the patient is automatically positioned such that the position of the region of interest of the patient coincides with the position of the isocenter of the medical imaging apparatus.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: November 28, 2023
    Assignee: Siemens Healthcare GmbH
    Inventor: Martin Harder
  • Patent number: 11826136
    Abstract: The invention relates to a method for determining ischemic status. The method comprises acquiring magnetic resonance diffusion tensor matrices and obtaining a relative decrease of diffusion magnitude due to the ischemic status from the magnetic resonance diffusion tensor matrices. The invention also relates to a method for assessing stroke onset time. The method comprises acquiring magnetic resonance diffusion tensor matrices and obtaining a relative decrease of pure anisotropy due to stroke from the magnetic resonance diffusion tensor matrices.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: November 28, 2023
    Assignee: TAIPEI MEDICAL UNIVERSITY
    Inventors: Cheng-Yu Chen, Hsiao-Wen Chung, Duen-Pang Kuo, Chia-Feng Lu, Yu-Chieh Jill Kao
  • Patent number: 11826203
    Abstract: An analyzing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to detect a shear wave propagating in an object. The processing circuitry is configured to calculate an index value that indicates viscosity within the object and that is not dependent on any physical model related to viscoelasticity, by analyzing the detected shear wave.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: November 28, 2023
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Yasunori Honjo, Masaki Watanabe, Tetsuya Kawagishi