Patents Examined by Joel F Brutus
  • Patent number: 11478153
    Abstract: A system utilizing thermoacoustic imaging to estimate tissue temperature within a region of interest that includes an object of interest and a reference which are separated by at least one boundary located at least at two boundary locations. The system uses a thermoacoustic imaging system that includes an adjustable radio frequency (RF) applicator configured to emit RF energy pulses into the tissue region of interest and heat tissue therein and an acoustic receiver configured to receive multi-polar acoustic signals generated in response to heating of tissue in the region of interest; and one or more processors that are able to: process received multi-polar acoustic generated in the region of interest in response to the RF energy pulses to determine a peak-to-peak amplitude thereof; and calculate a temperature at the at least two boundary locations using the peak-to-peak amplitudes of the multi-polar acoustic signals and a distance between the boundary locations.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: October 25, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Jang Hwan Cho, Paul A. Picot, Michael M. Thornton
  • Patent number: 11471221
    Abstract: A tool tracking method comprises receiving stereo image data of a tool. The tool includes a tracking marker. The method also comprises receiving first kinematic data for the tool and determining a three-dimensional image-derived pose of the tool from the stereo image data of the tool and the tracking marker. The method also comprises determining a first kinematic pose of the tool from the first kinematic data and determining a pose offset between the image-derived pose of the tool and the first kinematic pose of the tool. The method also comprises determining a corrected first kinematic pose of the tool based on the pose offset and the first kinematic data.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 18, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Tao Zhao, William C. Nowlin, Wenyi Zhao
  • Patent number: 11471066
    Abstract: A robotic system includes a manipulator assembly including at least one actuator, a control system including at least one processor configured to control the manipulator assembly, an elongate flexible catheter configured to be manipulated by the at least one actuator, and a support structure mounted on a proximal portion of the elongate flexible catheter. The support structure includes a first alignment feature and a second alignment feature. The first alignment feature is configured to mate with a first sensor such that the first sensor is maintained parallel to a longitudinal axis of the support structure. The second alignment feature is configured to mate with a second sensor such that the second sensor is maintained parallel to the longitudinal axis of the support structure and such that the second sensor is fixed relative to the first sensor in at least one degree of freedom.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: October 18, 2022
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Anoop B. Kowshik, Caitlin Q. Donhowe, Vincent Duindam, Carolyn M. Fenech
  • Patent number: 11468573
    Abstract: A system and method for enhancing visualization of color flow ultrasound is provided. The method includes generating estimated parameter values from filtered ultrasound image data. The method includes applying filter thresholds to the estimated parameter values, wherein the filter thresholds comprise first and second high power rejection thresholds and first and second low power and low velocity rejection thresholds. The method includes applying a transparency map to the estimated parameter values between the first and second high power rejection thresholds and between the first and second low power and low velocity rejection thresholds. The method includes generating a color flow image based at least in part on the estimated parameter values. The method includes presenting the color flow image at a display system.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: October 11, 2022
    Assignee: GENERAL ELECTRIC COMPANY
    Inventor: Jihye Han
  • Patent number: 11457981
    Abstract: A system (11) includes a medical probe (36) for insertion into a cavity of an organ, which includes a position and direction sensor (60) and a camera (45), both operating in a sensor coordinate system (62). The system further includes a processor (44) configured to: receive, from an imaging system (21) operating in an image coordinate system (28), a three-dimensional image of the cavity including open space and tissue; receive, from the medical probe, signals indicating positions and respective directions of the medical probe inside the cavity; receive, from the camera, respective visualized locations inside the cavity; register the image coordinate system with the sensor coordinate system so as to identify one or more voxels in the image at the visualized locations, and when the identified voxels have density values in the received image that do not correspond to the open space, to update the density values of the identified voxels to correspond to the open space.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 4, 2022
    Assignees: Acclarent, Inc., Biosense Webster (Israel) Ltd.
    Inventors: Assaf Govari, Vadim Gliner, Babak Ebrahimi, Ehsan Shameli, Fatemeh Akbarian, Jetmir Palushi, Yehuda Algawi
  • Patent number: 11457894
    Abstract: Provided are an ultrasound probe and an operating method of the ultrasound probe which can select a power transmission channel and/or a wireless power transmission mode that are most appropriate in an environment in which power transmission channels exist. The operating method of the ultrasound probe includes operations of obtaining a plurality of pieces of information about power transmission channels; displaying a power transmission channel list, based on the plurality of pieces of information about the power transmission channels; selecting a power transmission channel from the power transmission channel list; and receiving wireless power that is transmitted via the selected power transmission channel.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: October 4, 2022
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Gil-Ju Jin, Mi-Jeoung Ahn
  • Patent number: 11456518
    Abstract: A method for manufacturing a radio frequency (RF) applicator which includes covering a ceramic insert with a coating, wherein the ceramic insert has dimensions that substantially match an internal volume of an open-ended, hollow waveguide, and wherein the ceramic insert has a recess therein configured to accept a radio frequency emitter, heating the waveguide to a temperature that is above a melting point of the coating, placing the coated ceramic insert into the internal volume of the heated waveguide, wherein the internal volume is completely filled except for the recess, and cooling the waveguide, ceramic insert, and coating to a temperature below the melting point of the coating so that the coating solidifies and fills gaps between facing surfaces of the insert and the waveguide.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: September 27, 2022
    Assignee: ENDRA Life Sciences Inc.
    Inventors: Christopher Nelson Davis, Charlton Chen, Michael M. Thornton
  • Patent number: 11445997
    Abstract: Systems and methods for accurately measuring changes in biomarker sensitive hydrogel volume and shape due to exposure to various biomarkers include a system for identifying one or more dimensional changes in a biomarker sensitive hydrogel positioned within an in vivo environment. The system includes a biomarker sensitive hydrogel positioned within an in vivo environment and configured to dimensionally change in response to interaction with predefined biomarkers. The system additionally includes an ultrasound transducer for locating and identifying one or more characteristics of the biomarker sensitive hydrogel and a computer system in electrical communication with the ultrasound transducer. The computer system is configured to receive characteristics of the biomarker sensitive hydrogel from the ultrasound transducer and determine dimensional changes of the biomarker sensitive hydrogel based on the received characteristics.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: September 20, 2022
    Assignees: UNIVERSITY OF UTAH RESEARCH FOUNDATION, SENTIOMED, INC.
    Inventors: Mahender nath Avula, Douglas A. Christensen, Navid Farhoudi, Stan Kanarowski, Julia Koerner, Jules John Magda, Rami Sami Marrouche, Christopher F. Reiche, Florian Solzbacher, Michael David Sorenson
  • Patent number: 11446091
    Abstract: A method and system are provided for determining a navigation pathway for an invasive medical instrument in a blood vessel is provided. The method includes receiving a first medical image. The method further includes determining one or more parameters associated with the first medical image. Additionally, the method includes identifying a second medical image in a computer memory, based on the determined one or more parameters. Furthermore, the method includes modifying the second medical image based on the first medical image. The method also includes determining from the modified second medical image the navigation pathway for the invasive medical instrument.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: September 20, 2022
    Assignee: Siemens Healthcare GmbH
    Inventor: Sham S Lonkadi
  • Patent number: 11445989
    Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating visualization data for a selected neuro-network. In one aspect, a method comprises: receiving selection data selecting a network in a brain of a subject; processing magnetic resonance image data of the brain to identify a set of tracts that are predicted to be included in the selected network; processing the set of tracts to identify a proper subset of the set of tracts as being spurious tracts; generating a set of valid tracts by filtering the spurious tracts from the set of tracts that are predicted to be included in the selected network; providing visualization data for the selected network showing a three-dimensional spatial representation of both: (i) the valid tracts, and (ii) the spurious tracts, wherein the spurious tracts are visually distinguished from the valid tracts.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: September 20, 2022
    Assignee: Omniscient Neurotechnology Pty Limited
    Inventors: Michael Edward Sughrue, Stephane Philippe Doyen, Kieran Mann
  • Patent number: 11439312
    Abstract: A plurality of modules are simultaneously positioned at locations that correspond to different angiosomes. Each of these modules has a front surface shaped and dimensioned for contacting a person's skin, a plurality of different-wavelength light sources aimed in a forward direction, and a plurality of light detectors aimed to detect light arriving from in front of the front surface. Each module is supported by a support structure (e.g., a strap or a clip) that is shaped and dimensioned to hold the front surface adjacent to the person's skin at a respective position. Perfusion in each of the angiosomes is monitored using these modules, and the surgeon can rely on this information to guide his or her intervention.
    Type: Grant
    Filed: April 23, 2017
    Date of Patent: September 13, 2022
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Andreas H. Hielscher, Christopher J. Fong, Jennifer Hoi, Hyun K. Kim, Michael Khalil
  • Patent number: 11436737
    Abstract: A cluster-based approach and template-based approach are combined to segment brain matter from a three-dimensional MRI image of voxels. The morphological information captured by the template-based approach may be used to refine the segmentation produced by the cluster-based approach. Conversely, the “similarity” information captured by the cluster-based approach may be used to refine the segmentation produced by the template-based approach.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: September 6, 2022
    Assignee: Ricoh Company, Ltd.
    Inventors: Krishna Prasad Agara Venkatesha Rao, Srinidhi Srinivasa
  • Patent number: 11432805
    Abstract: Vector Doppler Imaging (VDI) improves on conventional Color Doppler Imaging (CDI) by giving speed and direction of blood flow at each pixel of a display generated by a computing system. Multiple angles of Plane wave transmissions (PWT) via an ultrasound transducer conveniently give projected Doppler measurements over a wide field of view, providing enough angular diversity to identify velocity vectors in a short time window while capturing transitory flow dynamics. A fast, aliasing-resistant velocity vector estimator for PWT is presented, and VDI imaging of a carotid artery with a 5 MHz linear array is shown using a novel synthetic particle flow visualization method.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: September 6, 2022
    Assignee: Verasonics, Inc.
    Inventors: John Flynn, Ronald Elvin Daigle
  • Patent number: 11432801
    Abstract: A method and system are provided for guiding a needle to a target location within a subject. The system comprises a probe and a needle guide. The probe includes two or more transducers that are arranged to direct sound waves toward a target location on a subject. The needle guide can be detachably coupled to the probe, and may be used to maintain the needle within viewing planes of the transducers while the needle is inserted into the subject. To facilitate guidance of the needle, a real-time image of the target region can be produced by overlaying images produced by the two or more transducers. Such a system may provide a more adaptive and reliable way to guide the insertion of a needle, allowing for more sophisticated and fool-proof viewing planes, improved versatility, and more ergonomic needle control.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: September 6, 2022
    Assignee: DUKE UNIVERSITY
    Inventor: Charles Y. Kim
  • Patent number: 11432735
    Abstract: The present disclosure relates to a method for controlling a magnetic resonance imaging guided radiation therapy apparatus (100) comprising a magnetic resonance imaging system (106). The method comprises: acquiring magnetic resonance data using the magnetic resonance imaging system from an organ (146), the organ being marked by a predefined marker; the magnetic resonance data comprising 3D image data; identifying in a reconstructed 2D image of the magnetic resonance data at least one signal void candidate of the marker; processing the 3D image data and the identified signal void for calculating a likelihood that the identified signal void candidate is part of the marker; outputting an indication of the calculated likelihood; in response to the outputting, receiving a user input specifying performing a radio therapy; and controlling the irradiation of the organ using the radiation therapy.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: September 6, 2022
    Assignee: Koninklijke Philips N.V.
    Inventors: Teuvo Juhani Vaara, Erkki Tapani Vahala
  • Patent number: 11426611
    Abstract: The present disclosure is directed to a precision ultrasound scanner for imaging, for example, the prostate in a way that produces a superior image of the prostate while removing the iatrogenic risk and patient discomfort associated with other methods of providing an ultrasound image of the prostate. The present disclosure describes an apparatus and method for forming a high precision image of the prostate from outside the patient's body wherein the resolution in sufficient to image, for example, cancerous lesions on the surface of the prostate. To achieve such images, coded excitation, tissue harmonic imaging, advanced transducers operating in the 10 MHz to 40 MHz range is used to achieve a useable signal-to-noise reflection while being able to position the imaging transducer as close as possible to the prostate without risk or discomfort to the patient.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: August 30, 2022
    Assignee: ArcScan, Inc.
    Inventors: John D. Watson, Andrew K. Levien
  • Patent number: 11423532
    Abstract: According to embodiment, an image processing apparatus comprising a specifying unit and a display controller. The specifying unit that specifies an acquisition position of an indicator relating to blood flow on a blood vessel-containing image collected by a medical image diagnostic apparatus. The display controller that displays the acquisition position on the blood vessel-containing image and displays the indicator on a display unit in association with the acquisition position.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: August 23, 2022
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Akihito Takahashi, Satoshi Wakai, Takuya Sakaguchi
  • Patent number: 11419516
    Abstract: A table for an MRI system includes a top surface for supporting a patient being imaged and a motion sensor for sensing motion of the patient. The motion sensor is located below the top surface and includes a self-resonant spiral (SRS) coil and a coupling loop. The coupling loop generates a drive RF signal to excite the SRS coil to radiate a magnetic field having a predefined resonant frequency. The coupling loop also receives a reflection RF signal from the SRS coil. The motion sensor is located such that at least a portion of a torso of the patient being imaged is within the magnetic field. A controller is configured to detect patient motion based on the reflection RF signal.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: August 23, 2022
    Assignee: GE Precision Healthcare LLC
    Inventors: Randall H. Buchwald, Louis Jay Vannatta
  • Patent number: 11420018
    Abstract: In the present invention, an interface control module for controlling a mapping/imaging/recording system is provided for placement on a catheter control handle. The interface control module includes control elements that are operably connected to the mapping/imaging/recording system in order to control various functions of the imaging/recording system relating to images represented on a display forming a part of the mapping/imaging/recording system. The interface control module can be integrated with the catheter control handle or can be formed as a separate component that is releasably attachable to the catheter control handle to enable a use to operate the mapping/imaging/recording system from the catheter control handle being utilized in an interventional medical procedure.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: August 23, 2022
    Assignee: General Electric Company
    Inventors: Rodger F. Schmit, Adrian F. Warner, Daniel R. Schneidewend, Timothy P. Stiemke
  • Patent number: 11412976
    Abstract: A system and a method is provided for assessing motion of a biological tissue of a subject including one or more superficial biological layers and a targeted biological layer. An optical perturbation is introduced within the one or more superficial biological layers but not within the targeted biological layer. A set of optical signal data is acquired preceding, during, or following the optical perturbation and, using the set of optical signal data, a set of optical characteristics is determined that is representative of light transiting the biological layers. Using the set of optical characteristics and a model of the biological layers, a target optical signal consistent with a target biological layer is separated and a movement of the desired biological tissue is determined using the target optical signal.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: August 16, 2022
    Assignee: The General Hospital Corporation
    Inventors: Quan Zhang, Gary Strangman