Patents Examined by John A Bodnar
  • Patent number: 11018134
    Abstract: A semiconductor device is provided. The semiconductor device includes a first transistor, a first interconnect structure, and a second transistor. The first transistor has a first gate length. The first interconnect structure is over the first transistor. The second transistor is over the first interconnect structure. The second transistor is electrically coupled to the first transistor through the first interconnect structure. The second transistor has a second gate length, and the first gate length is shorter than the second gate length.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Te Lin, Wei-Yuan Lu, Feng-Cheng Yang
  • Patent number: 11011371
    Abstract: Embodiments disclosed herein relate to methods for forming memory devices, and more specifically to improved methods for forming a dielectric encapsulation layer over a memory material in a memory device. In one embodiment, the method includes thermally depositing a first material over a memory material at a temperature less than the temperature of the thermal budget of the memory material, exposing the first material to nitrogen plasma to incorporate nitrogen in the first material, and repeating the thermal deposition and nitrogen plasma operations to form a hermetic, conformal dielectric encapsulation layer over the memory material. Thus, a memory device having a hermetic, conformal dielectric encapsulation layer over the memory material is formed.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: May 18, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Milind Gadre, Shaunak Mukherjee, Praket P. Jha, Deenesh Padhi, Ziqing Duan, Abhijit B. Mallick
  • Patent number: 10991631
    Abstract: A silicon-on-insulator (SOI) CMOS transistor and a SOI heterojunction bipolar transistor (HBT) are fabricated on the same semiconductor substrate. First and second SOI regions are formed over the semiconductor substrate. A SOI CMOS transistor is fabricated in the first SOI region, and a collector region of the SOI HBT is fabricated in the second SOI region. The collector region can be formed by performing a first implant to a local collector region in the second SOI region, and performing a second implant to an extrinsic collector region in the second SOI region, wherein the extrinsic collector region is separated from the local collector region. A SiGe base is formed over the collector region, wherein a dielectric structure separates portions of the SiGe region and the extrinsic collector region. The SOI CMOS transistor and SOI HBT may be used to implement a front end module of an RF system.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: April 27, 2021
    Assignee: Newport Fab, LLC
    Inventors: Edward J. Preisler, Paul D. Hurwitz, Marco Racanelli, David J. Howard
  • Patent number: 10991578
    Abstract: A semiconductor device including a nanostructure, comprising a planar layer (1020) of a Ill-nitride semiconductor crystal, which layer includes an array of epitaxially grown nanowire structures (1010), and semiconductor material (1016) which is redistributed from said nanowire structures in a reformation step after epitaxial growth, arranged to fill out a spacing between the nanowire structures, wherein the array of nanowire structures and the semiconductor material form a coherent layer.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: April 27, 2021
    Assignee: HEXAGEM AB
    Inventor: Jonas Ohlsson
  • Patent number: 10978603
    Abstract: An energy storage device comprising a substrate comprising a groove having a first and a second face. A capacitor material in the groove. The first and the second face of the groove having a coat of metal. Wherein the coat of metal on the first face is not in electrical contact with the coat of metal on the second face.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: April 13, 2021
    Assignee: POWER ROLL LIMITED
    Inventor: Alexander John Topping
  • Patent number: 10971366
    Abstract: Methods for depositing a metal silicide are provide and include heating a substrate having a silicon-containing surface to a deposition temperature, and exposing the substrate to a deposition gas to deposit a silicide film on the silicon-containing surface during a chemical vapor deposition process. The deposition gas contains a silicon precursor, a titanium or other metal precursor, and a phosphorus or other non-metal precursor.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: April 6, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Xuebin Li, Patricia M. Liu
  • Patent number: 10964832
    Abstract: An energy storage device comprising a substrate comprising a series of grooves. Each groove having a first and a second face. Wherein there is a capacitor material in each groove of the series of grooves.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: March 30, 2021
    Assignee: POWER ROLL LIMITED
    Inventor: Alexander John Topping
  • Patent number: 10957697
    Abstract: A manufacture includes a substrate comprising a first portion and a second portion. The manufacture further includes a first polysilicon structure over the first portion of the substrate. The manufacture further includes a second polysilicon structure over the second portion of the substrate. The manufacture further includes two spacers on opposite sidewalls of the second polysilicon structure, wherein each spacer of the two spacers has a concave corner region between an upper portion and a lower portion. The manufacture further includes a protective layer covering the first portion of the substrate and the first polysilicon structure, the protective layer exposing the second portion of the substrate, the second polysilicon structure, and partially exposing the two spacers.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: March 23, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Shao Cheng, Shin-Yeu Tsai, Chui-Ya Peng, Kung-Wei Lee
  • Patent number: 10950429
    Abstract: Embodiments described herein provide for post deposition anneal of a substrate, having an amorphous carbon layer deposited thereon, to desirably reduce variations in local stresses thereacross. In one embodiment, a method of processing a substrate includes positioning a substrate, having an amorphous carbon layer deposited thereon, in a first processing volume, flowing an anneal gas into the first processing volume, heating the substrate to an anneal temperature of not more than about 450° C., and maintaining the substrate at the anneal temperature for about 30 seconds or more. Herein, the amorphous carbon layer was deposited on the substrate using a method which included positioning the substrate on a substrate support disposed in a second processing volume, flowing a processing gas into the second processing volume, applying pulsed DC power to a carbon target disposed in the second processing volume, forming a plasma of the processing gas, and depositing the amorphous carbon layer on the substrate.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: March 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Bhargav S. Citla, Mei-Yee Shek, Srinivas D. Nemani
  • Patent number: 10950703
    Abstract: A semiconductor device includes a substrate, a gate structure disposed over the substrate, a drain structure disposed in the substrate, and a source structure disposed in the substrate on an n opposite side of the gate structure from the drain structure. The substrate includes a first semiconductor layer, a second semiconductor layer over the first semiconductor layer, and an insulating layer sandwiched between the first semiconductor layer and the second semiconductor layer. The source structure and the drain structure include a same conductivity type. The source structure includes at least an epitaxial layer. The source structure extends deeper into the substrate than the drain structure.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: March 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventor: Chien Hung Liu
  • Patent number: 10937829
    Abstract: In an example, a memory array may include a plurality of first dielectric materials and a plurality of stacks, where each respective first dielectric material and each respective stack alternate, and where each respective stack comprises a first conductive material and a storage material. A second conductive material may pass through the plurality of first dielectric materials and the plurality of stacks. Each respective stack may further include a second dielectric material between the first conductive material and the second conductive material.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: March 2, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Agostino Pirovano, Andrea Redaelli, Fabio Pellizzer, Innocenzo Tortorelli
  • Patent number: 10930848
    Abstract: A method of manufacturing a variable resistance memory device includes: forming an array of memory cells on a substrate, each memory cell including a variable resistance structure and a switching element; and forming a sidewall insulating layer covering a sidewall of the switching element. The forming the sidewall insulating layer includes: a preliminary step of supplying a silicon source to an exposed sidewall of the switching element; and a main step of performing a process cycle a plurality of times, the process cycle comprising supplying the silicon source and supplying a reaction gas, A time duration of the supplying the silicon source in the preliminary step is longer than a time duration of the supplying the silicon gas in the process cycle in the main step.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: February 23, 2021
    Assignee: SAMSUNG ELECTRONICS CO.. LTD.
    Inventors: Byongju Kim, Young-Min Ko, Jonguk Kim, Jaeho Jung, Dongsung Choi
  • Patent number: 10930753
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin comprising silicon, the fin having a lower fin portion and an upper fin portion. A first insulating layer is directly on sidewalls of the lower fin portion of the fin, wherein the first insulating layer is a non-doped insulating layer comprising silicon and oxygen. A second insulating layer is directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin, the second insulating layer comprising silicon and nitrogen. A dielectric fill material is directly laterally adjacent to the second insulating layer directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: February 23, 2021
    Assignee: Intel Corporation
    Inventors: Michael L. Hattendorf, Curtis Ward, Heidi M. Meyer, Tahir Ghani, Christopher P. Auth
  • Patent number: 10916586
    Abstract: Three dimensional memory arrays and methods of forming the same are provided. An example three dimensional memory array can include a stack comprising a plurality of first conductive lines separated from one another by at least an insulation material, and at least one conductive extension arranged to extend substantially perpendicular to the plurality of first conductive lines such that the at least one conductive extension intersects each of the plurality of first conductive lines. Storage element material is arranged around the at least one conductive extension, and a select device is arranged around the storage element material. The storage element material is radially adjacent an insulation material separating the plurality of first conductive lines, and the plurality of materials arranged around the storage element material are radially adjacent each of the plurality of first conductive lines.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: February 9, 2021
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Scott E. Sills, Gurtej S. Sandhu
  • Patent number: 10916634
    Abstract: A method of fabricating a semiconductor device includes forming a memory gate and a hard mask layer on the memory gate, forming a select gate on a sidewall of the memory gate and the hard mask layer, performing a selective oxidation process to form an oxide layer on the hard mask layer and the select gate, wherein a portion of the oxide layer on the select gate is thicker than a portion of the oxide layer on the hard mask layer, and removing the oxide layer on the hard mask layer and the hard mask layer to expose a top surface of the memory gate.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: February 9, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei Xu, Wenbo Ding, Yu-Yang Chen, Wang Xiang
  • Patent number: 10910509
    Abstract: The present disclosure is directed to a method for processing a silicon wafer that allows improving performance by exploiting the properties of crystallographic imperfections. The method comprises the steps of: forming a silicon layer with crystallographic imperfections in the proximity of a surface of the silicon; exposing at least a portion of the device to hydrogen atoms in a manner such that hydrogen atoms migrate towards the region with crystallographic imperfections and into the silicon along the crystallographic imperfections; and controlling the charge state of hydrogen atoms located at the crystallographic imperfections to be positive when the imperfections are in a p-type region of the wafer; and negative when the imperfections are at an n-type region of the wafer by thermally treating the silicon while exposing the silicon to an illumination intensity of less than 10 mW/cm2.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: February 2, 2021
    Assignee: NEWSOUTH INNOVATIONS PTY LIMITED
    Inventors: Alison Ciesla, Brett Jason Hallam, Catherine Emily Chan, Chee Mun Chong, Daniel Chen, Darren Bagnall, David Neil Payne, Ly Mai, Malcolm David Abbott, Moonyong Kim, Ran Chen, Stuart Ross Wenham, Tsun Hang Fung, Zhengrong Shi
  • Patent number: 10910538
    Abstract: An optoelectronic semiconductor component and a method for producing an optoelectronic semiconductor component are disclosed. In an embodiment an optoelectronic semiconductor component includes a plurality of active regions configured to emit electromagnetic radiation, wherein the active regions are arranged spaced apart from each other, wherein the active regions have a main extension direction, wherein each active region has a core region, an active layer covering the core region at least in directions transverse to the main extension direction, wherein each active region has a cover layer covering the active layer at least in directions transverse to the main extension direction, wherein each active region has a current spreading layer at least partly covering sidewalls of each respective active region, and wherein a metal layer directly adjoins parts of the active regions and parts of the current spreading layers.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: February 2, 2021
    Assignee: OSRAM OLED GMBH
    Inventor: Tansen Varghese
  • Patent number: 10910359
    Abstract: A transistor includes a first insulator over a substrate; a first oxide thereover; a second oxide in contact with at least part of the top surface of the first oxide; a first conductor and a second conductor each in contact with at least part of the top surface of the second oxide; a third oxide that is over the first conductor and the second conductor and is in contact with at least part of the top surface of the second oxide; a second insulator thereover; a third conductor which is over the second insulator and at least part of which overlaps with a region between the first conductor and the second conductor; and a third insulator which is over the third conductor and at least part of which is in contact with the top surface of the first insulator. The thickness of a region of the first insulator that is in contact with the third insulator is less than the thickness of a region of the first insulator that is in contact with the first oxide.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: February 2, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Naoki Okuno, Kosei Nei, Hiroaki Honda, Naoto Yamade, Hiroshi Fujiki
  • Patent number: 10896927
    Abstract: A micro-LED transfer method, manufacturing method and device are provided. The micro-LED transfer method comprises: obtaining a laser-transparent carrier substrate having a first surface and a second surface with micro-LEDs; forming a protection layer on at least one of the first surface and the second surface and a third surface of a receiving substrate, wherein the third surface is to receive the micro-LEDs to be transferred via pads; bringing the micro-LEDs to be transferred into contact with the pads on the third surface; and irradiating the micro-LEDs to be transferred with laser from the first surface to lift-off the micro-LEDs to be transferred from the carrier substrate wherein the protection layer configured to protect the third surface from the irradiation of the laser.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: January 19, 2021
    Assignee: GOERTEK INC.
    Inventors: Quanbo Zou, Peixuan Chen, Xiangxu Feng
  • Patent number: 10892348
    Abstract: A method of rounding fin-shaped structures includes the following steps. A substrate including fin-shaped structures, and pad oxide caps and pad nitride caps covering the fin-shaped structures from bottom to top are provided. An isolation structure fills between the fin-shaped structures. A removing process is performed to remove a top part of the isolation structure and expose top parts of the fin-shaped structures. An oxidation process is performed to oxidize sidewalls of the top parts of the fin-shaped structures, thereby forming oxidized parts covering sidewalls of the top parts of the fin-shaped structures. The pad nitride caps are removed. The pad oxide caps and the oxidized parts are removed at the same time, thereby forming rounding fin-shaped structures.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: January 12, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hao-Hsuan Chang, Bin-Siang Tsai, Ting-An Chien, Yi-Liang Ye