Patents Examined by John Cooney
  • Patent number: 9822230
    Abstract: Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23° C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: November 21, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Liang Chen, Anne M. Kelly-Rowley, Shana P. Bunker, Stéphane Costeux
  • Patent number: 9815932
    Abstract: The present invention provides trimerization catalyst compositions having an ?,?-unsaturated carboxylate salt and methods to produce a polyisocyanurate/polyurethane foam using such trimerization catalyst compositions.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: November 14, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, Torsten Panitzsch, John Elton Dewhurst
  • Patent number: 9765009
    Abstract: Disclosed are processes, products, and compositions having tetraalkylguanidine salt of aromatic acid. The processes include providing a pre-mix comprising an aromatic carboxylic acid component and contacting a tetraalkylguanidine with the aromatic carboxylic acid component in the pre-mix to form the tetraalkylguanidine salt of aromatic carboxylic acid or producing a catalyst composition by contacting the tetraalkylguanidine with the aromatic carboxylic acid component to form the tetraalkylguanidine salt of aromatic carboxylic acid. The compositions include the tetraalkylguanidine salt of aromatic carboxylic acid. The product is formed by the tetraalkylguanidine salt of aromatic carboxylic acid.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: September 19, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Juan Jesus Burdeniuc, Matti Sakari Huhtasaari
  • Patent number: 9745408
    Abstract: A rigid foam having increased flame retardance comprises the reaction product of an isocyanate component and an isocyanate-reactive component. The isocyanate component and an isocyanate-reactive component are reacted in the presence of an isocyanurate catalyst component and a carbodiimide catalyst component. The isocyanurate catalyst component comprises 1,3,5-tris(3-(dimethylamino)propyl)-hexahydro-s-triazine and the carbodiimide catalyst component comprises 3-methyl-1-phenyl-2-phospholene-1-oxide. A method of forming the rigid foam on a surface comprises the steps of providing the isocyanate component, providing the isocyanate-reactive component, providing the isocyanurate catalyst component, providing the carbodiimide catalyst component, and spraying the isocyanate component, isocyanate-reactive component, isocyanurate catalyst component, and carbodiimide catalyst component onto the surface to form the rigid foam on the surface.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: August 29, 2017
    Assignee: BASF SE
    Inventors: Charles Elwood Jones, Todd William Wishneski
  • Patent number: 9745440
    Abstract: The present invention generally relates to polyurethane foam composition. In one embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more liquid and/or solid fire-retardants. In another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of one or more intumescent materials (e.g., expandable graphite (EG)). In still another embodiment, the present invention relates to polyurethane foam compositions that have increased and/or improved fire-retardant properties due to the inclusion of expandable graphite.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 29, 2017
    Inventors: John A. Stahl, Jonathon S. Stahl
  • Patent number: 9738766
    Abstract: An organophosphorus compound useful in a phosphorus containing flame retardant and a flame retardant polyurethane foam, where the organophosphorus compound is shown in Formula (I) where Y is selected from the group consisting of an —OH group, an —NH2 group, an —NHR3 group, and an —SH group, where R3 is a monovalent hydrocarbyl group having 1 to 10 carbon atoms; R is a divalent hydrocarbyl group; X is a heteroatom group; and R1 and R2 are each independently a substituted or unsubstituted hydrocarbyl group, wherein R1 and R2 can be optionally joined to form a ring.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 22, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Ravi B. Shankar, Matthew Martin Yonkey, YuDong Qi, Nahrain E. Kamber
  • Patent number: 9738747
    Abstract: A one component isocyanate prepolymer mixture for formulating a polyurethane product in a single step process, with monomeric methylene diphenyl diisocyanate (MDI) content in the mixture not exceeding 3%, preferably less than 2%, more preferably less than 1% of the total weight. The mixture contains monofunctional alcohol, an isocyanate component or isocyanate mixture component, propellant, catalyst, stabiliser, and one or more polyols. The monofunctional alcohol constitutes ethylene glycol ethers or propylene glycol ethers. A method for formulating a one component polyurethane foam on the basis of the mixture is disclosed.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: August 22, 2017
    Assignee: Selena Labs Sp. z o.o.
    Inventors: Przemyslaw Dwornicki, Marek Barth, Tomasz Pawlus
  • Patent number: 9725595
    Abstract: Combinations of gelatinous elastomer and polyurethane foam may be made by introducing a plasticized A-B-A triblock copolymer resin and/or an A-B diblock copolymer resin into a mixture of polyurethane foam forming components including a polyol and an isocyanate. The plasticized copolymer resin is polymerized to form the gelatinous elastomer in-situ while simultaneously polymerizing the polyol and the isocyanate to form polyurethane foam. The polyurethane reaction is exothermic and can generate sufficient temperature to melt the styrene-portion of the A-B-A triblock copolymer resin thereby extending the crosslinking and in some cases integrating the A-B-A triblock copolymer within the polyurethane polymer matrix. The combination has a marbled appearance. The gel component has higher heat capacity than polyurethane foam and thus has good thermal conductivity and acts as a heat sink. Another advantage of in situ gel-foam is that the gel component provides higher support factors compared to the base foam alone.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: August 8, 2017
    Assignee: PETERSON CHEMICAL TECHNOLOGY, LLC
    Inventors: Bruce W. Peterson, Mark L. Crawford
  • Patent number: 9725553
    Abstract: To provide a catalyst composition excellent in cell openness properties and initial curing properties, and a method for producing a polyurethane resin using the same. A catalyst composition comprising an amine compound (A) of the formula (1), a hydroxy acid (B) of the formula (2) and a tertiary amine compound (C) is used for the production of a polyurethane resin. [Each of R1 and R2 which are independent of each other, is a methyl group or an ethyl group, R3 is a C2-4 linear or branched alkyl group, R4 is a C1-18 bivalent hydrocarbon residue, m is an integer of from 1 to 3, and n is an integer of from 1 to 6.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: August 8, 2017
    Assignee: TOSOH CORPORATION
    Inventor: Yoshihiro Takahashi
  • Patent number: 9718937
    Abstract: The present invention provides a kind of inherent flame retardant rigid polyurethane foam. The production formula comprises 100 to 105 pbw of polyether polyol and reactive phosphorus-containing flame retardant, 2.5 to 3.5 pbw of amine catalyst, 0.8 to 2.5 pbw of tertiary amine catalyst, 0.8 to 2.5 pbw of foam stabilizer, 0.5 to 1.5 pbw of blowing agent, 135 to 150 pbw of isocyanates, and 0.05 to 0.1 pbw of organo-metallic catalyst, wherein the reactive phosphorus-containing flame retardant is 9,10-dihydro-9-oxa-10-phosphaphenanthrene-4-hydroxybenzyl alcohol. The active monomers containing flame retarding elements are introduced into main chain and side chain of PU for modification, which permanently improves the flame retardancy of PU without obvious effect on other performance of PU matrix.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: August 1, 2017
    Assignee: XIAMEN UNIVERSITY
    Inventors: Lizong Dai, Cong Xie, Wei'ang Luo, Birong Zeng, Yiting Xu, Xinyu Liu, Kaibin He, Qi Li, Yuanyuan Li, Xianming Chen
  • Patent number: 9714332
    Abstract: The combination foam comprises a matrix composed of polyurethane foam and foamed particles of thermoplastic polyurethane comprised therein, where matrix and particles are each made up of polyol components and polyisocyanate components, wherein at least 50% by weight of the basic building blocks forming the polyol component of the matrix and particles are identical and at least 50% by weight of the basic building blocks forming the polyisocyanate component of the matrix and particles are identical.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: July 25, 2017
    Assignee: BASF SE
    Inventors: Frank Prissok, Michael Harms, Martin Vallo
  • Patent number: 9708454
    Abstract: The present invention relates to mixtures of 1,1,1,4,4,4-hexafluorobutene (1336mzzm) and 1-chloro-3,3,3-trifluoropropene (1233zd). The blends are useful as blowing agents for polymer foam, solvents, aerosol propellants and heat transfer media.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: July 18, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Mary C Bogdan, Clifford p. Gittere, James M. Bowman, Yiu Keung Ling, David J. Williams
  • Patent number: 9688830
    Abstract: Described are (a) a process for production of polyurethane foam by reacting one or more polyol components with one or more isocyanate components, wherein wax having a congealing point in the range from 40° C. to 90° C. is employed as an additive, (b) a polyurethane foam obtainable by said process, (c) the use of waxes having a congealing point in the range from 40° C. to 90° C. as an additive in the manufacture of polyurethane foams to coarsen the foam structure, and also (d) a polyurethane foam production composition containing a wax having a congealing point in the range from 40° C. to 90° C.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: June 27, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Eva Emmrich-Smolczyk, Harald Modro, Ralf Althoff, Rainer Ziegler
  • Patent number: 9683071
    Abstract: A rigid polyurethane foam includes the reaction product of an isocyanate and an isocyanate reactive component in the presence of a blowing agent. The isocyanate reactive component includes an aromatic polyester polyol, a rigid polyol, and an aliphatic polyester polyol. The rigid polyurethane foam has a tensile adhesion of greater than 35 kPa (5 psi) when disposed on a metal substrate or a polyester, polyurethane, or epoxy coated metal substrate, each having a substrate temperature of greater than 41° C. (105° F.), and tested in accordance with ASTM D1623-09. A method of forming a composite article comprising a substrate and the rigid polyurethane foam includes the steps of combining the isocyanate reactive component and the isocyanate in the presence of the blowing agent to form a reaction mixture and applying the reaction mixture to the substrate having a substrate temperature of greater than 41° C. (105° F.) to form the composite article.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 20, 2017
    Assignee: BASF SE
    Inventor: Michael L. Jackson
  • Patent number: 9657151
    Abstract: There is provided herein a method of making hydroxymethylphosphonate comprising reacting paraformaldehyde, at least one dialkyl phosphite and at least one trialkyl phosphite, in the presence of at least one amine catalyst.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: May 23, 2017
    Assignee: ICL-IP America Inc.
    Inventors: Jeffrey K. Stowell, Gerardo Francisco, Edward Weil
  • Patent number: 9649262
    Abstract: A composition including an effective amount of trans-1,3,3,3-tetrafluoropropene component combined with an effective amount of an alcohol selected from the group of methanol, ethanol, propanol, isopropanol, tert-butanol, isobutanol, 2-ethyl hexanol and any combination thereof, where the composition has azeotropic properties.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: May 16, 2017
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: James M. Bowman, Rajiv R. Singh, David J. Williams, Hang T. Pham, Justin L. Becker
  • Patent number: 9650466
    Abstract: A composite material includes, in an exemplary embodiment a polyurethane foam and a plurality of inorganic particles dispersed therein. The polyurethane foam is formed from a reaction mixture that includes a first polyether polyol having a first molecular weight and a functionality of about 3 or less, a second polyether polyol having a second molecular weight less than the first molecular weight and a functionality of greater than about 3, and at least one isocyanate. The ratio of an amount of the first polyol in the reaction mixture to an amount of the second polyol in the reaction mixture is between about 1:1 to about 5:1.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: May 16, 2017
    Assignee: CERTAINTEED CORPORATION
    Inventor: Fyodor A. Shutov
  • Patent number: 9650497
    Abstract: A group of novel compounds containing one or more amino substituted DOPO (9,10-dihydro-9-oxa-phosphaphenthren-10-oxide) moieties. The compounds were found to have good flame retardant properties and also good thermal stability, which makes them particularly suitable as flame retardant additives for various thermoplastic polymers. In particular, they can be incorporated in a polyurethane foam.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: May 16, 2017
    Assignees: EMPA EIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT, FRITZ NAUER AG
    Inventors: Sabyasachi Gaan, Matthias Neisius, Primo Mercoli, Shuyu Liang, Henri Mispreuve, Reinold Näscher
  • Patent number: 9637722
    Abstract: A polyurethane porous membrane is produced by a simple method to be used for at least one of applications of cell culture and cancer cell growth inhibition. The production method of the polyurethane porous membrane to be used for at least one of the applications of cell culture and cancer cell growth inhibition comprises: a first step of forming a layer of a polyurethane material which is uncured, on a substrate; and a second step of supplying water vapor to an exposed surface of the layer of the polyurethane material formed on the substrate, which is away from the substrate, so as to cure the polyurethane material and provide the layer of the polyurethane material with a porous structure having a plurality of irregularities on the exposed surface.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: May 2, 2017
    Assignees: TOYODA GOSEI CO., LTD., National University Corporation Yamagata University
    Inventors: Seitaro Taki, Hisashi Mizuno, Hiroyuki Nakagawa, Toshiyuki Hagiyama, Atsuki Yoshimura, Masaru Tanaka, Ayano Sasaki, Toshifumi Takahashi, Tsuyoshi Ohta
  • Patent number: 9637585
    Abstract: The subject disclosure provides a viscoelastic polyurethane foam and a method of forming the viscoelastic polyurethane foam. The viscoelastic polyurethane foam comprises the reaction product of a toluene diisocyanate and an isocyanate reactive component. The isocyanate reactive component comprises a first polyether triol, a second polyether triol, an amino alcohol chain extender, and a hydrolyzable polyether polydimethylsiloxane copolymer. The first polyether triol has a weight-average molecular weight of from 500 to 5,000 g/mol, at least 60 parts by weight ethyleneoxy units, based on the total weight of the first polyether triol, and at least 10% ethyleneoxy end caps. The second polyether triol, which is different from the first polyether triol, has a weight-average molecular weight of from 5,000 to 10,000 g/mol and at least 80% ethyleneoxy end caps.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: May 2, 2017
    Assignee: BASF SE
    Inventors: Theodore M. Smiecinski, Chad Alan Rogers