Patents Examined by John Lin
  • Patent number: 11616093
    Abstract: A first light receiving element according to an embodiment of the present disclosure includes a plurality of pixels, a photoelectric converter that is provided as a layer common to the plurality of pixels, and contains a compound semiconductor material, and a first electrode layer that is provided between the plurality of pixels on light incident surface side of the photoelectric converter, and has a light-shielding property.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: March 28, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Shuji Manda, Ryosuke Matsumoto, Suguru Saito, Shigehiro Ikehara, Tetsuji Yamaguchi, Shunsuke Maruyama
  • Patent number: 11610918
    Abstract: A display device includes a pixel portion in which a pixel electrode layer is arranged in a matrix, and an inverted staggered thin film transistor having a combination of at least two kinds of oxide semiconductor layers with different amounts of oxygen is provided corresponding to the pixel electrode layer. In the periphery of the pixel portion in this display device, a pad portion is provided to be electrically connected to a common electrode layer formed on a counter substrate through a conductive layer made of the same material as the pixel electrode layer. One objection of our invention to prevent a defect due to separation of a thin film in various kinds of display devices is realized, by providing a structure suitable for a pad portion provided in a display panel.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: March 21, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Rihito Wada, Yoko Chiba
  • Patent number: 11527645
    Abstract: A semiconductor device of an embodiment includes: a first and second semiconductor regions of a first conductivity type; a third semiconductor region of a second conductivity type disposed between the first and second semiconductor regions; a fourth semiconductor region of the first conductivity type disposed below the first semiconductor region; a fifth semiconductor region of the first conductivity type disposed below the second semiconductor region; a first region containing carbon disposed between the first and fourth semiconductor regions; a second region containing carbon disposed between the second and fifth semiconductor regions; a third region disposed between the first and second regions; the first and second regions having a first and second carbon concentrations respectively, the third region not containing carbon or having a lower carbon concentration than the first and second carbon concentrations in a portion below an end of a lower face of a gate electrode.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: December 13, 2022
    Assignee: KIOXIA CORPORATION
    Inventors: Tadayoshi Uechi, Takashi Izumida, Takeshi Shimane
  • Patent number: 11489134
    Abstract: An organic light-emitting display device and method of manufacturing the same are provided. An organic light-emitting display device includes: a substrate, an organic light-emitting device on the substrate, an encapsulation layer on the substrate and the organic light-emitting device, the encapsulation layer covering the organic light-emitting device, the encapsulation layer including an encapsulation hole, a black matrix covering the encapsulation layer, the black matrix including a black matrix hole over the encapsulation hole, and a color filter in the encapsulation hole and the black matrix hole.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: November 1, 2022
    Assignee: LG Display Co., Ltd.
    Inventors: YongBaek Lee, Ho-Jin Kim, Goeun Jung, Dongyoung Kim
  • Patent number: 11482556
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor includes a first semiconductor substrate having a photodetector and a floating diffusion node. A transfer gate is disposed over the first semiconductor substrate, where the transfer gate is at least partially disposed between opposite sides of the photodetector. A second semiconductor substrate is vertically spaced from the first semiconductor substrate, where the second semiconductor substrate comprises a first surface and a second surface opposite the first surface. A readout transistor is disposed on the second semiconductor substrate, where the second surface is disposed between the transfer gate and a gate of the readout transistor. A first conductive contact is electrically coupled to the transfer gate and extending vertically from the transfer gate through both the first surface and the second surface.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Seiji Takahashi, Jhy-Jyi Sze
  • Patent number: 11456380
    Abstract: Present disclosure provides a transistor structure, including a substrate, a first gate over the substrate, a second gate over the substrate and laterally in contact with the first gate, a first conductive region of a first conductivity type in the substrate, self-aligning to a side of the first gate, and a second conductive region of the first conductivity type in the substrate, self-aligning to a side of the second gate. A method for manufacturing the transistor structure is also disclosed.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tung-Yang Lin, Hsueh-Liang Chou
  • Patent number: 11448932
    Abstract: An array substrate and a manufacturing method thereof in the embodiment of the present invention can complete the process of the array substrate with the touch function by using six photolithography processes, thereby simplifying the production process, saving cost, and shortening the production cycle.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 20, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Yuan Yan, Jiyue Song
  • Patent number: 11444173
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a substrate. The method also includes forming a gate structure over the fin structure. The method further includes forming fin spacers over sidewalls of the fin structure and gate spacers over sidewalls of the gate structure. In addition, the method includes forming a source/drain structure over the fin structure and depositing a dummy material layer to cover the source/drain structure. The dummy material layer is removed faster than the gate spacers during the removal of the dummy material layer. The method further includes forming a salicide layer over the source/drain structure and the fin spacers, and forming a contact over the salicide layer. The dummy material layer includes Ge, amorphous silicon or spin-on carbon.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Jin-Mu Yin, Tsung-Chieh Hsiao, Chia-Lin Chuang, Li-Zhen Yu, Dian-Hau Chen, Shih-Wei Wang, De-Wei Yu, Chien-Hao Chen, Bo-Cyuan Lu, Jr-Hung Li, Chi-On Chui, Min-Hsiu Hung, Hung-Yi Huang, Chun-Cheng Chou, Ying-Liang Chuang, Yen-Chun Huang, Chih-Tang Peng, Cheng-Po Chau, Yen-Ming Chen
  • Patent number: 11257690
    Abstract: A structure includes a thermal interface material, and a Perforated Foil Sheet (PFS) including through-openings therein, with a first portion of the PFS embedded in the thermal interface material. An upper layer of the thermal interface material is overlying the PFS, and a lower layer of thermal interface material is underlying the PFS. The thermal interface material fills through-openings in the PFS.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Wensen Hung
  • Patent number: 11251232
    Abstract: The device includes a substrate, a green light emitting element on the substrate, and a green color film layer disposed on a light exit side of the green light emitting element correspondingly, a travel distance of the light emitted from the green light emitting element in the green color film layer remains substantially unchanged with a change of a light exit angle of the light. Thus, the present disclosure can prevent a color purity of a green light passing through the green color film layer from changing, thereby improving the color shift performance of a green light passing through the green color film layer, and improving the optical performance of the green light, and thus further improving the display effect of the device and the display panel.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: February 15, 2022
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Fang He, Shi Shu
  • Patent number: 11177352
    Abstract: Example embodiments relate to a graphene device, methods of manufacturing and operating the same, and an electronic apparatus including the graphene device. The graphene device is a multifunctional device. The graphene device may include a graphene layer and a functional material layer. The graphene device may have a function of at least one of a memory device, a piezoelectric device, and an optoelectronic device within the structure of a switching device/electronic device. The functional material layer may include at least one of a resistance change material, a phase change material, a ferroelectric material, a multiferroic material, multistable molecules, a piezoelectric material, a light emission material, and a photoactive material.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: November 16, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jinseong Heo, Kiyoung Lee, Seongjun Park
  • Patent number: 11164899
    Abstract: An imaging device is used that has: a substrate; a first electrode layer disposed on the substrate, and having a first electrode; a first photoelectric conversion film disposed on the first electrode layer; a pixel electrode layer disposed on the first photoelectric conversion film, and having a pixel electrode; a second photoelectric conversion film disposed on the pixel electrode layer; and a second electrode layer disposed on the second photoelectric conversion film, and having a second electrode, wherein at least part of a period from among a first accumulation period during which a signal of the first photoelectric conversion film is accumulated, and a second accumulation period during which a signal of the second photoelectric conversion film is accumulated, does not overlap the other from among the first accumulation period and the second accumulation period.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: November 2, 2021
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takahiro Yamasaki, Atsushi Furubayashi
  • Patent number: 11152287
    Abstract: The present invention is intended to provide a semiconductor module and a semiconductor device that are compatible with various rated currents. A semiconductor module includes a lead frame, and a semiconductor element joined with the lead frame. The lead frame includes a first joining structure and a second joining structure. The first joining structure includes a void part as a part at which the lead frame does not exist, and the second joining structure includes a void part as a part at which the lead frame does not exist. Each of the first joining structure and the second joining structure has a shape such that one of the first joining structure and the second joining structure complements at least part of the void part of the other assuming that the first joining structure and the second joining structure are overlapped.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 19, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideo Komo, Arata Iizuka, Takeshi Omaru
  • Patent number: 11139359
    Abstract: A display device includes a pixel portion in which a pixel is arranged in a matrix, the pixel including an inverted staggered thin film transistor having a combination of at least two kinds of oxide semiconductor layers with different amounts of oxygen and having a channel protective layer over a semiconductor layer to be a channel formation region overlapping a gate electrode layer and a pixel electrode layer electrically connected to the inverted staggered thin film transistor. In the periphery of the pixel portion in this display device, a pad portion including a conductive layer made of the same material as the pixel electrode layer is provided. In addition, the conductive layer is electrically connected to a common electrode layer formed on a counter substrate.
    Type: Grant
    Filed: October 18, 2016
    Date of Patent: October 5, 2021
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Rihito Wada, Yoko Chiba
  • Patent number: 11107744
    Abstract: An IGBT module includes a heat dissipation base plate. A first ceramic heat dissipation element is embedded in the heat dissipation base plate. A first wiring layer is provided on the surface of the heat dissipation base plate. The first side of an IGBT chip is mounted onto the first wiring layer. The second side of the IGBT chip is provided with a heat conductive metal plate. A first heat dissipation plate having a first through hole is provided on a side of the first wiring layer. The IGBT chip and the heat conductive metal plate are located in the first through hole. A second wiring layer is provided on a side of the first heat dissipation plate away from the IGBT chip. The second wiring layer is provided on a side of the heat conductive metal plate.
    Type: Grant
    Filed: January 22, 2017
    Date of Patent: August 31, 2021
    Assignee: RAYBEN TECHNOLOGIES (ZHUHAI) LIMITED
    Inventors: Shan Zhong, Weidong Gao, Qizhao Hu, Wai Kin Raymond Lam
  • Patent number: 11094820
    Abstract: A method of fabricating a symmetric element of a resistive processing unit (RPU) includes forming a substrate with a channel region connecting two doped regions, and forming a source above one of the two doped regions and a drain above the other of the two doped regions. A gate is formed above the channel region, and a bar ferroelectric is disposed above the channel region and below the gate.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: August 17, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jin-Ping Han, Ramachandran Muralidhar, Dennis M. Newns, Paul M. Solomon
  • Patent number: 11094784
    Abstract: A method of fabricating a semiconductor device is described. The method includes forming a stack of sacrificial layers on a substrate. A U-shaped trench is formed in the stack of the sacrificial layers. A first U-shaped channel layer is deposited in the U-shaped trench. A first U-shaped sacrificial layer is conformally formed covering the U-shaped channel layer. A second U-shaped channel layer is conformally deposited covering the first U-shaped sacrificial layer. A gate is formed around the first and the second U-shaped channel layers.
    Type: Grant
    Filed: April 8, 2019
    Date of Patent: August 17, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ruilong Xie, Julien Frougier, Chanro Park, Tenko Yamashita
  • Patent number: 11088092
    Abstract: The present disclosure relates to a method of forming an integrated chip. The method may be performed by forming first and second source regions within a substrate. The first and second source regions are separated by a drain region along a first direction. First and second middle-end-of-the-line (MEOL) structures are formed over the substrate. The first and second MEOL structures have bottom surfaces that continually extend past edges of the first and second source regions, respectively, along a second direction perpendicular to the first direction. A power rail is formed that is electrically coupled to the first and second MEOL structures. The power rail has a first interconnect wire, a via rail on and in contact with the first interconnect wire, and a second interconnect wire on and in contact with the via rail. The via rail continuously extends along the first direction past the first and second MEOL structures.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kam-Tou Sio, Chih-Ming Lai, Chun-Kuang Chen, Chih-Liang Chen, Charles Chew-Yuen Young, Chi-Yeh Yu, Jiann-Tyng Tzeng, Ru-Gun Liu, Wen-Hao Chen
  • Patent number: 11088192
    Abstract: In some embodiments, the present disclosure relates to a method of forming an integrated chip (IC) structure. The method may be performed by forming a first integrated chip die having one or more semiconductor devices within a first substrate, and forming a passivation layer over the first integrated chip die. The passivation layer is selectively etched to form interior sidewalls defining a first opening, and a conductive material is deposited over the passivation layer and within the first opening. The conductive material is patterned to define a conductive blocking structure that laterally extends past the one or more semiconductor devices in opposing directions. The first integrated chip die is bonded to a second integrated chip die having an array of image sensing elements within a second substrate.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: August 10, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Yan-Chih Lu
  • Patent number: 11081291
    Abstract: A photosensor includes a first electrode, a second electrode that opposes the first electrode, and a photoelectric conversion layer that is disposed between the first electrode and the second electrode and converts incident light into electric charges. At least one electrode selected from the group consisting of the first electrode and the second electrode is light-transmissive. The photoelectric conversion layer contains a perovskite compound. The fluorescence spectrum of the perovskite compound has a first peak at a first wavelength and a second peak at a second wavelength that is longer than the first wavelength. The photoelectric conversion layer is in ohmic contact with each of the first electrode and the second electrode.
    Type: Grant
    Filed: July 14, 2018
    Date of Patent: August 3, 2021
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Michio Suzuka, Ryuusuke Uchida, Taisuke Matsui