Patents Examined by John Lin
  • Patent number: 11728431
    Abstract: Semiconductor devices and methods are provided. A semiconductor device according to the present disclosure includes a first gate-all-around (GAA) transistor that includes a first plurality of channel members, and a second GAA transistor that includes a second plurality of channel members. The first plurality of channel members has a first pitch (P1) and the second plurality of channel members has a second pitch (P2) smaller than the first pitch (P1).
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 11677041
    Abstract: Radiation detecting-structures and fabrications methods thereof are presented. The methods include, for instance: providing a substrate, the substrate including at least one trench extending into the substrate from an upper surface thereof; and epitaxially forming a radiation-responsive semiconductor material layer from one or more sidewalls of the at least one trench of the substrate, the radiation-responsive semiconductor material layer responding to incident radiation by generating charge carriers therein. In one embodiment, the sidewalls of the at least one trench of the substrate include a (111) surface of the substrate, which facilitates epitaxially forming the radiation-responsive semiconductor material layer. In another embodiment, the radiation-responsive semiconductor material layer includes hexagonal boron nitride, and the epitaxially forming includes providing the hexagonal boron nitride with an a-axis aligned parallel to the sidewalls of the trench.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: June 13, 2023
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Rajendra P. Dahal, Ishwara B. Bhat, Yaron Danon, James Jian-Qiang Lu
  • Patent number: 11676997
    Abstract: High voltage semiconductor devices are described herein. An exemplary semiconductor device includes a first doped region and a second doped region disposed in a substrate. The first doped region and the second doped region are oppositely doped and adjacently disposed in the substrate. A first isolation structure and a second isolation structure are disposed over the substrate, such that each are disposed at least partially over the first doped region. The first isolation structure is spaced apart from the second isolation structure. A resistor is disposed over a portion of the first isolation structure and electrically coupled to the first doped region. A field plate disposed over a portion of the second doped region and electrically coupled to the second doped region.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng, Ruey-Hsin Liu
  • Patent number: 11664363
    Abstract: A method for manufacturing a light emitting device including forming a plurality of first light emitting cells and a plurality of second light emitting cells on one surface of a first substrate, providing a second substrate to face the first and second light emitting cells, selectively bonding the first light emitting cells onto the second substrate, and cutting the second substrate to a mounting unit including at least two first light emitting cells.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: May 30, 2023
    Assignee: Seoul Viosys Co., Ltd.
    Inventor: Chung Hoon Lee
  • Patent number: 11665904
    Abstract: A semiconductor device includes a substrate including a cell region and a peripheral region, a cell stacked structure stacked on the substrate in the cell region, a channel layer in one structure penetrating the cell stacked structure, a driving transistor formed in the peripheral region, and a plug structure coupled to the driving transistor and including a stacking structure of at least two contact plugs shorter than the channel layer, wherein each of the contact plugs is arranged at a same height as a part of the cell stacked structure.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: May 30, 2023
    Assignee: SK hynix Inc.
    Inventor: Jung Ryul Ahn
  • Patent number: 11665932
    Abstract: The present disclosure provided an organic light-emitting display device comprising: a substrate where a first direction and a second direction intersecting each other are defined, the substrate on which sub-pixels arranged along the first direction and the second direction; first electrodes of organic light-emitting diodes allocated respectively to the sub-pixels; a first bank having first openings exposing the first electrodes; and a second bank having second openings exposing the first electrode on the first bank, wherein in at least one region, the second opening simultaneously exposes at least two first electrodes neighboring in the third direction.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: May 30, 2023
    Assignee: LG Display Co., Ltd.
    Inventors: Dojoong Kim, Daeil Kang, Soojin Kim, Samjong Lee, Saehoon Oh, Hyungi Hong
  • Patent number: 11646341
    Abstract: A light-receiving device of an embodiment of the present disclosure includes a photoelectric conversion layer that includes a first compound semiconductor with a first conductivity type and absorbs a wavelength of an infrared region, a first semiconductor layer formed on the photoelectric conversion layer, and an insulation layer formed to surround the photoelectric conversion layer and the first semiconductor layer, the first semiconductor layer having a second conductivity-type region at a middle region excluding a periphery facing the photoelectric conversion layer.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: May 9, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yoshifumi Zaizen, Shunsuke Maruyama
  • Patent number: 11631725
    Abstract: The present disclosure provided an organic light-emitting display device comprising: a substrate where a first direction and a second direction intersecting each other are defined, the substrate on which sub-pixels arranged along the first direction and the second direction; first electrodes of organic light-emitting diodes allocated respectively to the sub-pixels; a first bank having first openings exposing the first electrodes; and a second bank having second openings exposing the first electrode on the first bank, wherein in at least one region, the second opening simultaneously exposes at least two first electrodes neighboring in the third direction.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: April 18, 2023
    Assignee: LG Display Co., Ltd.
    Inventors: Dojoong Kim, Daeil Kang, Soojin Kim, Samjong Lee, Saehoon Oh, Hyungi Hong
  • Patent number: 11626315
    Abstract: A planarization method includes forming a dielectric layer over a polish stop layer. The dielectric layer is polished until reaching the polish stop layer, and the polished dielectric layer has a concave top surface. A compensation layer is formed over the concave top surface. The compensation layer is polished.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Jung Huang, Hsu-Shui Liu, Han-Wen Liao, Yu-Yao Huang, Hsiao-Wei Chen, Yung-Lin Hsu, Kuang-Huan Hsu
  • Patent number: 11616093
    Abstract: A first light receiving element according to an embodiment of the present disclosure includes a plurality of pixels, a photoelectric converter that is provided as a layer common to the plurality of pixels, and contains a compound semiconductor material, and a first electrode layer that is provided between the plurality of pixels on light incident surface side of the photoelectric converter, and has a light-shielding property.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: March 28, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Shuji Manda, Ryosuke Matsumoto, Suguru Saito, Shigehiro Ikehara, Tetsuji Yamaguchi, Shunsuke Maruyama
  • Patent number: 11610918
    Abstract: A display device includes a pixel portion in which a pixel electrode layer is arranged in a matrix, and an inverted staggered thin film transistor having a combination of at least two kinds of oxide semiconductor layers with different amounts of oxygen is provided corresponding to the pixel electrode layer. In the periphery of the pixel portion in this display device, a pad portion is provided to be electrically connected to a common electrode layer formed on a counter substrate through a conductive layer made of the same material as the pixel electrode layer. One objection of our invention to prevent a defect due to separation of a thin film in various kinds of display devices is realized, by providing a structure suitable for a pad portion provided in a display panel.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: March 21, 2023
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Kengo Akimoto, Shigeki Komori, Hideki Uochi, Rihito Wada, Yoko Chiba
  • Patent number: 11527645
    Abstract: A semiconductor device of an embodiment includes: a first and second semiconductor regions of a first conductivity type; a third semiconductor region of a second conductivity type disposed between the first and second semiconductor regions; a fourth semiconductor region of the first conductivity type disposed below the first semiconductor region; a fifth semiconductor region of the first conductivity type disposed below the second semiconductor region; a first region containing carbon disposed between the first and fourth semiconductor regions; a second region containing carbon disposed between the second and fifth semiconductor regions; a third region disposed between the first and second regions; the first and second regions having a first and second carbon concentrations respectively, the third region not containing carbon or having a lower carbon concentration than the first and second carbon concentrations in a portion below an end of a lower face of a gate electrode.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: December 13, 2022
    Assignee: KIOXIA CORPORATION
    Inventors: Tadayoshi Uechi, Takashi Izumida, Takeshi Shimane
  • Patent number: 11489134
    Abstract: An organic light-emitting display device and method of manufacturing the same are provided. An organic light-emitting display device includes: a substrate, an organic light-emitting device on the substrate, an encapsulation layer on the substrate and the organic light-emitting device, the encapsulation layer covering the organic light-emitting device, the encapsulation layer including an encapsulation hole, a black matrix covering the encapsulation layer, the black matrix including a black matrix hole over the encapsulation hole, and a color filter in the encapsulation hole and the black matrix hole.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: November 1, 2022
    Assignee: LG Display Co., Ltd.
    Inventors: YongBaek Lee, Ho-Jin Kim, Goeun Jung, Dongyoung Kim
  • Patent number: 11482556
    Abstract: Various embodiments of the present disclosure are directed towards an image sensor. The image sensor includes a first semiconductor substrate having a photodetector and a floating diffusion node. A transfer gate is disposed over the first semiconductor substrate, where the transfer gate is at least partially disposed between opposite sides of the photodetector. A second semiconductor substrate is vertically spaced from the first semiconductor substrate, where the second semiconductor substrate comprises a first surface and a second surface opposite the first surface. A readout transistor is disposed on the second semiconductor substrate, where the second surface is disposed between the transfer gate and a gate of the readout transistor. A first conductive contact is electrically coupled to the transfer gate and extending vertically from the transfer gate through both the first surface and the second surface.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Seiji Takahashi, Jhy-Jyi Sze
  • Patent number: 11456380
    Abstract: Present disclosure provides a transistor structure, including a substrate, a first gate over the substrate, a second gate over the substrate and laterally in contact with the first gate, a first conductive region of a first conductivity type in the substrate, self-aligning to a side of the first gate, and a second conductive region of the first conductivity type in the substrate, self-aligning to a side of the second gate. A method for manufacturing the transistor structure is also disclosed.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: September 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Tung-Yang Lin, Hsueh-Liang Chou
  • Patent number: 11448932
    Abstract: An array substrate and a manufacturing method thereof in the embodiment of the present invention can complete the process of the array substrate with the touch function by using six photolithography processes, thereby simplifying the production process, saving cost, and shortening the production cycle.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: September 20, 2022
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Yuan Yan, Jiyue Song
  • Patent number: 11444173
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a substrate. The method also includes forming a gate structure over the fin structure. The method further includes forming fin spacers over sidewalls of the fin structure and gate spacers over sidewalls of the gate structure. In addition, the method includes forming a source/drain structure over the fin structure and depositing a dummy material layer to cover the source/drain structure. The dummy material layer is removed faster than the gate spacers during the removal of the dummy material layer. The method further includes forming a salicide layer over the source/drain structure and the fin spacers, and forming a contact over the salicide layer. The dummy material layer includes Ge, amorphous silicon or spin-on carbon.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Jin-Mu Yin, Tsung-Chieh Hsiao, Chia-Lin Chuang, Li-Zhen Yu, Dian-Hau Chen, Shih-Wei Wang, De-Wei Yu, Chien-Hao Chen, Bo-Cyuan Lu, Jr-Hung Li, Chi-On Chui, Min-Hsiu Hung, Hung-Yi Huang, Chun-Cheng Chou, Ying-Liang Chuang, Yen-Chun Huang, Chih-Tang Peng, Cheng-Po Chau, Yen-Ming Chen
  • Patent number: 11257690
    Abstract: A structure includes a thermal interface material, and a Perforated Foil Sheet (PFS) including through-openings therein, with a first portion of the PFS embedded in the thermal interface material. An upper layer of the thermal interface material is overlying the PFS, and a lower layer of thermal interface material is underlying the PFS. The thermal interface material fills through-openings in the PFS.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Wensen Hung
  • Patent number: 11251232
    Abstract: The device includes a substrate, a green light emitting element on the substrate, and a green color film layer disposed on a light exit side of the green light emitting element correspondingly, a travel distance of the light emitted from the green light emitting element in the green color film layer remains substantially unchanged with a change of a light exit angle of the light. Thus, the present disclosure can prevent a color purity of a green light passing through the green color film layer from changing, thereby improving the color shift performance of a green light passing through the green color film layer, and improving the optical performance of the green light, and thus further improving the display effect of the device and the display panel.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: February 15, 2022
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Fang He, Shi Shu
  • Patent number: 11177352
    Abstract: Example embodiments relate to a graphene device, methods of manufacturing and operating the same, and an electronic apparatus including the graphene device. The graphene device is a multifunctional device. The graphene device may include a graphene layer and a functional material layer. The graphene device may have a function of at least one of a memory device, a piezoelectric device, and an optoelectronic device within the structure of a switching device/electronic device. The functional material layer may include at least one of a resistance change material, a phase change material, a ferroelectric material, a multiferroic material, multistable molecules, a piezoelectric material, a light emission material, and a photoactive material.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: November 16, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jinseong Heo, Kiyoung Lee, Seongjun Park