Patents Examined by John P Sheehan
  • Patent number: 7691215
    Abstract: The invention relates to inorganic intermetallic compounds having a PMR effect (combined GMR/CMR effect), which are characterized in that they contain at least two elements per formula unit and have a field sensitivity of less than 10% per 0.1 T at temperatures greater than 290 K. The invention also relates to composites consisting of these compounds, to a method for the production thereof an to their use, in particular, as magnetic field sensors or in the domain of spin electronics.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventor: Claudia Felser
  • Patent number: 7691323
    Abstract: A rare-earth alloy ingot is produced by melting an alloy composed of 20-30 wt % of a rare-earth constituent which is Sm alone or at least 50 wt % Sm in combination with at least one other rare-earth element, 10-45 wt % of Fe, 1-10 wt % of Cu and 0.5-5 wt % of Zr, with the balance being Co, and quenching the molten alloy in a strip casting process. The strip-cast alloy ingot has a content of 1-200 ?m size equiaxed crystal grains of at least 20 vol % and a thickness of 0.05-3 mm. Rare-earth sintered magnets made from such alloys exhibit excellent magnetic properties and can be manufactured under a broad optimal temperature range during sintering and solution treatment.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: April 6, 2010
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kazuaki Sakaki, Koji Sato, Takahiro Hashimoto, Hajime Nakamura, Takehisa Minowa
  • Patent number: 7686894
    Abstract: A magnetically soft powder composite material is described, which is composed of at least 99.4 wt. % of a pure iron powder, a phosphatized iron powder, or an iron alloy powder and 0.05 wt. % to 0.6 wt. % of a soft ferrite powder and which is primarily suited for use in rapidly switching solenoid valves in motor vehicle engines. Furthermore, a method for manufacturing such a magnetically soft powder composite material includes the following method steps: a) preparation of a starting mixture including a pure iron powder, a phosphatized iron powder, or an iron alloy powder and a soft ferrite powder, b) mixing of the starting mixture, c) compacting of the starting mixture in a press under increased pressure, d) debinding of the compacted starting mixture in an inert gas atmosphere or in an oxygen-containing gas atmosphere, and e) heat treatment of the compacted starting mixture in an oxidizing gas atmosphere at a temperature of 410° C. to 500° C.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: March 30, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Adnan Okumus, Waldemar Draxler
  • Patent number: 7674342
    Abstract: A method of producing a soft magnetic material includes the steps of preparing soft magnetic powder containing a plurality of soft magnetic particles etching the soft magnetic powder to remove surfaces of the soft magnetic particles and, after the etching step, heat-treating the soft magnetic powder in a finely divided state at a temperature of not less than 400° C. and not more than 900° C. By this method configured as above, desired magnetic characteristics can be obtained.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: March 9, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Maeda, Naoto Igarashi, Kazuhiro Hirose, Haruhisa Toyoda
  • Patent number: 7670443
    Abstract: A method of making a magnetic alloy material includes the steps of: preparing a melt of an alloy material having a predetermined composition; rapidly cooling and solidifying the melt to obtain a rapidly solidified alloy represented by: Fe100-a-b-cREaAbTMc where RE is at least one rare-earth element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm and including at least about 90 at % of La; A is at least one element selected from Al, Si, Ga, Ge and Sn; TM is at least one transition metal element selected from Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 at %?a?10 at %, 4.7 at %?b?18 at % and 0 at %?c?9 at %; and producing a compound phase having an NaZn13-type crystal structure in at least about 70 vol % of the rapidly solidified alloy.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: March 2, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Ryosuke Kogure, Hirokazu Kanekiyo, Takeshi Nishiuchi, Satoshi Hirosawa
  • Patent number: 7662242
    Abstract: Non-oriented electrical steel sheet superior in core loss characterized by containing, by mass %, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2.0%, N: 0.005% or less, Ti: 0.02% or less, REM: 0.05% or less, S: 0.005% or less, O: 0.005% or less, and a balance of iron and unavoidable impurities and having a mass % of S shown by [S], a mass % of O shown by [O], a mass % of REM shown by [REM], a mass % of Ti shown by [Ti], and a mass % of N shown by [N] satisfying [Formula 1] and [Formula 2]: [REM]2×[O]2×[S]?1×10?15??[Formula 1] ([REM]2×[O]2×[S])÷([Ti]×[N])?1×10?10??[Formula 2].
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: February 16, 2010
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Miyazaki, Wataru Ohashi, Yousuke Kurosaki, Takeshi Kubota, Hiroshi Harada, Tomohiro Konno, Yutaka Matsumoto, Koichi Kirishiki
  • Patent number: 7658807
    Abstract: The present invention relates to a hot-rolled steel strip for further processing to form non-grain oriented electrical sheet with the following composition (in % by weight) C: <0.02%, Mn: ?1.2%, Si: 0.1-4.4%, Al 0.1-4.4%, wherein the sum formed from the Si content and twice the Al content is <5%, P: <0.15%, Sn: ?0.20%, Sb: ?0.20%, the remainder iron and unavoidable impurities, with a strip thickness which is at most 1.8 mm, and with a partially softened structure which is characterised by a high intensity for the ? fibre (fibre representation of orientation distribution functions) in the region of 0° to 60°, wherein the ratio I112/I001 formed from the intensity I112 of the position (112) <110> to the intensity I001 of the position (001) <110> is >0.4 and the ratio I111/I001 formed from the intensity I111 of the position (111) <110> to the intensity I001 of the position (001) <110> is >0.2.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: February 9, 2010
    Assignee: ThyssenKrupp Steel AG
    Inventors: Karl Ernst Friedrich, Wolfgang Rasim, Joergen Schneider, Rudolf Kawalla, Carl-Dieter Wuppermann
  • Patent number: 7651573
    Abstract: A ferromagnetic resonator for use in a marker in a magnetomechanical electronic article surveillance system has improved magnetoresonant properties and/or reduced eddy current losses by virtue of being annealed so that the resonator has a fine domain structure with a domain width less than about 40 ÿm, or less than about 1.5 times the thickness of the resonator. This produces in the resonator an induced magnetic easy axis which is substantially perpendicular to the axis along which the resonator is operated magnetically by a magnetic bias element also contained in the marker. The annealing which produces these characteristics can take place in a magnetic field of at least 1000 Oe, oriented at an angle with respect to the plane of the material being annealed so that the magnetic field has a significant component perpendicular to this plane, a component of at least about 20 Oe across the width of the material, and a smallest component along the direction of transport of the material through the annealing oven.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: January 26, 2010
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventor: Giselher Herzer
  • Patent number: 7645349
    Abstract: A sintered permanent magnet having a composition comprising, by mass, 27-33.5% of R, which is at least one of rare earth elements including Y, 0.5-2% of B, 0.002-0.15% of N, 0.25% or less of O, 0.15% or less of C, and 0.001-0.05% of P, the balance being Fe, wherein it is in the shape of a ring having an outer diameter of 10-100 mm, an inner diameter of 8-96 mm, and a height of 10-70 mm, with a plurality of magnetic poles axially extending on an outer circumferential surface. The distribution of a surface magnetic flux density B0 on magnetic poles in an axial direction of the ring magnet is in a range of 92.5% or more of the maximum of B0.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: January 12, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Nobuhiko Fujimori, Kazuhiro Sonoda, Takashi Tsukada, Junji Matsushima, Yasushi Kimura, Satoru Kikuchi
  • Patent number: 7641745
    Abstract: A soft magnetic material used for producing a powder compact has a plurality of iron particles having a Vickers hardness HV of less than 800 and satisfying the relationship of ?/??2.5, where ? represents the specific surface area of the iron particles measured by a gas adsorption method (Brunauer-Emmett-Teller (BET) method) and ? represents the apparent specific surface area of the iron particles calculated from the average particle diameter measured by a laser diffraction/scattering method.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: January 5, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kazuhiro Hirose, Haruhisa Toyoda, Takao Nishioka
  • Patent number: 7641985
    Abstract: A boron-free and silicon-free bonding alloy (16) for joining with a superalloy base material (12, 14). The bonding alloy includes aluminum in a concentration that is higher than the concentration of aluminum in the base material in order to depress the melting temperature for the bonding alloy to facilitate liquid phase diffusion bonding without melting the base material. The concentration of aluminum in the bonding alloy may be at least twice that of the concentration of aluminum in the base material. For joining cobalt-based superalloy materials that do no contain aluminum, the concentration of aluminum in the bonding alloy may be at least 5 wt. %.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: January 5, 2010
    Assignee: Siemens Energy, Inc.
    Inventor: Vasudevan Srinivasan
  • Patent number: 7632360
    Abstract: A rare earth magnet powder has a chemical composition which includes R: 5 to 20% (wherein, R represents one or two or more rare earth elements being inclusive of Y but exclusive of Dy and Tb), one or two of Dy and Tb: 0.01 to 10%, and B: 3 to 20%, with the balance comprising Fe and inevitable impurities; and an average particle diameter of 10 to 1,000 ?m, wherein 70% or more of the entire surface of the rare earth magnet powder is covered with a layer being rich in the content of one or two of Dy and Tb and having a thickness of 0.05 to 50 ?m.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: December 15, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Katsuhiko Mori, Ryoji Nakayama, Hideaki Ono, Takae Ono, legal representative, Tetsurou Tayu, Munekatsu Shimada, Makoto Kano, Yoshio Kawashita
  • Patent number: 7628874
    Abstract: Embodiments of the present invention provide methods of processing nickel-titanium alloys including from greater than 50 up to 55 atomic percent nickel to provide a desired austenite transformation temperature and/or austenite transformation temperature range. In one embodiment, the method comprises selecting a desired austenite transformation temperature, and thermally processing the nickel-titanium alloy to adjust an amount of nickel in solid solution in a TiNi phase of the alloy such that a stable austenite transformation temperature is reached, wherein the stable austenite transformation temperature is essentially equal to the desired austenite transformation temperature.
    Type: Grant
    Filed: February 19, 2007
    Date of Patent: December 8, 2009
    Assignee: ATI Properties, Inc.
    Inventor: Craig Wojcik
  • Patent number: 7622011
    Abstract: Disclosed is a Fe—Ga—P—C—B—Si based metallic glass alloy particle prepared by a gas atomizing process, which has an approximately complete spherical shape, a relatively large particle size and a high crystallization temperature (Tx). The plurality of particles may be subjected to a spark plasma sintering process at the crystallization temperature or less under a compression pressure of 200 MPa or more, to provide a bulk Fe-based sintered metal soft magnetic material of metallic glass, which has a high density, a single phase structure of metallic glass in an as-sintered state, excellent soft magnetic characteristics applicable to a core of a magnetic head, a transformer or a motor, and a high specific resistance.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: November 24, 2009
    Assignee: Japan Science and Technology Agency
    Inventors: Akihisa Inoue, Baolong Shen
  • Patent number: 7622012
    Abstract: A flat soft magnetic metal powder is provided that includes: Ni in the range of 60 to 90 mass %, one or more kinds of Nb, V, and Ta in the range of 0.05 to 20 mass % in total (0.05 to 19.95 mass % when Mo is added thereto), Mo in the range of 0.05 to 10 mass % if necessary, one or two kinds of Al and Mn in the range of 0.01 to 1 mass % in total if necessary, and the balance including Fe; an average grain size of 30 to 150 ?m and an aspect ratio (average grain size/average thickness) of 5 to 500; and a flat face. Here, with a peak intensity of a face index (220) in an X-ray diffraction pattern I220 and a peak intensity of a face index (111) I111, a peak intensity ratio I220/I111 is in the range of 0.1 to 10.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: November 24, 2009
    Assignee: Mitsubishi Materials Corporation
    Inventors: Gakuji Uozumi, Ryoji Nakayama, Yasushi Nayuki
  • Patent number: 7618496
    Abstract: A radial anisotropic sintered magnet formed into a cylindrical shape includes a portion oriented in directions tilted at an angle of 30° or more from radial directions, the portion being contained in the magnet at a volume ratio in a range of 2% or more and 50% or less, and a portion oriented in radial directions or in directions tilted at an angle less than 30° from radial directions, the portion being the rest of the total volume of the magnet. The radial anisotropic sintered magnet has excellent magnet characteristics without occurrence of cracks in the steps of sintering and cooling for aging, even if the magnet has a shape of a small ratio between an inner diameter and an outer diameter.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: November 17, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Koji Sato, Mitsuo Kawabata, Takehisa Minowa
  • Patent number: 7618497
    Abstract: An R-T-B system rare earth permanent magnet, which comprises main phase grains consisting of R2T14B compounds and a grain boundary phase having a higher amount of R than the above described main phase grains, and which satisfies AVE(X)/Y=0.8 to 1.0; and (X/Y)max/(X/Y)min=2.0 to 13.0, wherein X represents (weight ratio of heavy rare earth elements)/(the weight ratio of all rare earth elements) for a given number of the above described main phase grains Y represents (weight ratio of heavy rare earth elements)/(weight ratio of all rare earth elements) for the sintered body as a whole; AVE(X) represents the mean value of X obtained for the given number of main phase grains; (X/Y)min represents the minimum value of (X/Y) obtained for the given number of main phase grains; and (X/Y)max represents the maximum value of (X/Y) obtained for the given number of main phase grains.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: November 17, 2009
    Assignee: TDK Corporation
    Inventors: Eiji Kato, Chikara Ishizaka
  • Patent number: 7608154
    Abstract: A nonoriented electrical steel sheet excellent in core loss comprising copper sulfides with a sphere-equivalent radius of 100 nm or less, wherein the number density of the copper sulfides is less than 1×1010 [inclusions/mm3]. Preferably, the percentage of the number of copper sulfides with a (major axis)/(minor axis) ratio of more than 2 per total number of copper sulfides is 30% or less. The steel preferably further comprises Cu of 0.5 mass % or less and REM of 0.0005% or more and 0.03% or less, wherein the following expression (1) or expressions (1) and (2) are met: [REM]×[Cu]3?7.5×10?11??(1), ([REM]?0.003)0.1×[Cu]2?1.25×10?4??(2).
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: October 27, 2009
    Assignee: Nippon Steel Corporation
    Inventors: Wataru O-hashi, Masafumi Miyazaki, Yousuke Kurosaki, Takeshi Kubota
  • Patent number: 7608153
    Abstract: A rare earth magnet includes rare earth magnet particles; and amorphous and/or crystalline terbium oxide present at the boundary of the rare earth magnet particles and represented by the formula: TbOn, wherein 1.5<n?2. The rare earth magnet prevents decrease eddy current effectively.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: October 27, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsurou Tayu, Hideaki Ono, Takae Ono, legal representative, Yoshio Kawashita, Makoto Kano, Munekatsu Shimada
  • Patent number: 7608172
    Abstract: The method manufactures high-purity ferromagnetic sputter targets by cryogenic working the sputter target blank at a temperature below at least ?50° C. to impart at least about 5 percent strain into the sputter target blank to increase PTF uniformity of the target blank. The sputter target blank is a nonferrous metal selected from the group consisting of cobalt and nickel; and the nonferrous metal has a purity of at least about 99.99 weight percent. Finally, fabricating the sputter target blank forms a sputter target having an improved PTF uniformity arising from the cryogenic working.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: October 27, 2009
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Holger J. Koenigsmann, David E. Dombrowski, Thomas J. Hunt