Patents Examined by John P Sheehan
  • Patent number: 7601229
    Abstract: A method for making soft magnetic material includes: a first heat treatment step applying a temperature of at least 400 deg C. and less than 900 deg C. to metal magnetic particles; a step for forming a plurality of compound magnetic particles in which said metal magnetic particles are surrounded by insulation film; and a step for forming a shaped body by compacting a plurality of compound magnetic particles. This provides a method for making soft magnetic material that provides desired magnetic properties.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: October 13, 2009
    Assignee: Sumitomo Electric Industries Ltd.
    Inventors: Haruhisa Toyoda, Hirokazu Kugai, Kazuhiro Hirose, Naoto Igarashi, Takao Nishioka
  • Patent number: 7591834
    Abstract: A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: September 22, 2009
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick R. Buckley, Duncan J. Maitland
  • Patent number: 7588650
    Abstract: A high-temperature member for use in a gas turbine, the member being formed from a new wear-resistant alloy having good wear resistance as well as good ductility, is disclosed. The member was developed to prevent wear and damage that occur due to vibration while the turbine is running. The high-temperature member for use in a gas turbine is formed from a new cobalt-based wear-resistant alloy which is composed of a cobalt-chromium matrix and refractory metals, with the content of hard particles (such as carbide) reduced. The refractory metals promote work hardening, thereby improving wear resistance. The reduced content of hard particles contributes to good ductility.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: September 15, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Noboru Baba, Kazuya Nishi
  • Patent number: 7588621
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, W, C, N and Co. The alloy also contains, in addition to Ti, 9-14 at % Co with only impurity levels of Ni and Fe, 1-<3 at % Nb, 3-8 at % W and has a C/(C+N) ratio of 0.50-0.75. The amount of undissolved Ti(C,N) cores should be kept between 26 and 37 vol % of the hard constituents, the balance being one or more complex carbonitrides containing Ti, Nb and W. The alloy is particularly useful for milling of steel.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 15, 2009
    Assignee: Sandvik Intellectual Property Aktiebolag
    Inventors: Gerold Weinl, Ulf Rolander, Marco Zwinkels
  • Patent number: 7588648
    Abstract: The present invention provides a soft magnetic material and a powder magnetic core having desired magnetic characteristics. A soft magnetic material contains a metal magnetic powder 10. The metal magnetic powder 10 is formed from crystals 1 with an average size, as determined from X-ray diffraction, of at least 30 nm. It would be preferable, in the metal magnetic particles 10, for crystal grains 2 to have an average size of at least 10 microns.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: September 15, 2009
    Assignee: Sumitomo Electric Industries, Inc.
    Inventors: Haruhisa Toyoda, Hirokazu Kugai, Kazuhiro Hirose, Naoto Igarashi, Takao Nishioka
  • Patent number: 7585378
    Abstract: A method of making a material alloy for an R-T-Q based rare-earth magnet according to the present invention includes the steps of: preparing a melt of an R-T-Q based rare-earth alloy, where R is rare-earth elements, T is a transition metal element, Q is at least one element selected from the group consisting of B, C, N, Al, Si and P, and the rare-earth elements R include at least one element RL selected from the group consisting of Nd, Pr, Y, La, Ce, Pr, Sm, Eu, Gd, Er, Tm, Yb and Lu and at least one element RH selected from the group consisting of Dy, Tb and Ho; cooling the melt of the alloy to a temperature of 700° C. to 1,000° C. as first cooling process, thereby making a solidified alloy; maintaining the solidified alloy at a temperature within the range of 700° C. to 900° C. for 15 seconds to 600 seconds; and cooling the solidified alloy to a temperature of 400° C. or less as a second cooling process.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: September 8, 2009
    Assignee: Hitachi Metals, Ltd.
    Inventors: Tomoori Odaka, Yuji Kaneko
  • Patent number: 7585377
    Abstract: Critical current densities of internal tin wire having values of at least 2000 A/mm2 at temperature of 4.2 K and in magnetic field of 12 T are achieved by controlling the following parameters in a distributed barrier subelement design: wt % Sn in bronze; atomic Nb:Sn; local area ratio; reactable barrier; and barrier thickness relative to the filament thickness; and the design for restacking and wire reduction to control the maximum filament diameter at the subsequent heat reaction stage.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: September 8, 2009
    Assignee: Oxford Superconducting Technology
    Inventors: Michael Field, Jeff Parrell, Youzhu Zhang, Seungok Hong
  • Patent number: 7582171
    Abstract: A high-strength, soft-magnetic iron-cobalt-vanadium alloy selection is proposed, consisting of 35.0?Co?55.0% by weight, 0.75?V?2.5% by weight, O?Ta+2×Nb?0.8% by weight, 0.3<Zr?1.5% by weight, remainder Fe and melting-related and/or incidental impurities. This zirconium-containing alloy selection has excellent mechanical properties, in particular a very high yield strength, high inductances and particularly low coercive forces. It is eminently suitable for use as a material for magnetic bearings used in the aircraft industry.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 1, 2009
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Joachim Gerster, Johannes Tenbrink
  • Patent number: 7578892
    Abstract: A magnetic alloy material according to the present invention has a composition represented by Fe100-a-b-cREaAbCoc, where RE is a rare-earth element always including La, A is either Si or Al, 6 at %?a?11 at %, 8 at %?b?18 at %, and 0 at %?c?9 at %, and has either a two phase structure consisting essentially of an ?-Fe phase and an (RE, Fe, A) phase including 30 at % to 90 at % of RE or a three phase structure consisting essentially of the ?-Fe phase, the (RE, Fe, A) phase including 30 at % to 90 at % of RE and an RE(Fe, A)13 compound phase with an NaZn13-type crystal structure. The respective phases have an average minor-axis size of 40 nm to 2 ?m.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: August 25, 2009
    Assignee: Hitachi Metals, Ltd.
    Inventors: Satoshi Hirosawa, Hiroyuki Tomizawa, Ryosuke Kogure
  • Patent number: 7575645
    Abstract: The invention provides an Fe—Ni—Mo soft magnetic flaky powder having a component composition of, in percent by mass, Ni: 60 to 90%, Mo: 0.05 to 1.95%, and the balance of Fe and unavoidable impurities, and a flat surface of an average particle size of 30 to 150 ?m, and an aspect ratio (average particle size /average thickness) of 5 to 500; and having a peak intensity ratio I200/I111 within a range between 0.43 and 10, where I200 is the peak height of the face index (200) and I111 is the peak height of the face index (111), in an X-ray diffraction pattern measured in such a manner that the plane including the X-ray incident direction and the diffraction direction is perpendicular to the flat surface of the soft magnetic flaky powder, and the angle between the incident direction and the flat surface is equal to the angle between the diffraction direction and the flat surface.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: August 18, 2009
    Assignees: Mitsubishi Materials Corporation, JEMCO Inc.
    Inventors: Kazunori Igarashi, Gakuji Uozumi, Yasushi Nayuki, Ryoji Nakayama
  • Patent number: 7572345
    Abstract: Substrates comprising a surface comprising chromium, said surface being adapted to exhibit reduced coefficient of friction and/or increased hardness.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: August 11, 2009
    Assignee: Southwest Research Institute
    Inventors: Geoffrey Dearnaley, Kevin C. Walter
  • Patent number: 7569115
    Abstract: Assemblages of particles of a magnetic alloy that are suited to magnetic recording are represented by the formula [TXM1-X] containing T and M in a composition ratio where X in the formula is in the range from 0.3 or greater to 0.7 or less, where T is one or two members of the group consisting of Fe and Co and M is one or two members of the group consisting of Pt and Pd, and metallic elements other than T and M that constitute no more than 30 at. % (including 0 at. %) of (T+M) as a percentage of atoms, and the remainder consists of impurities that are unavoidable from a production standpoint, wherein: the face-centered tetragonal fraction is 10-100%, the average grain size as measured by TEM observation (DTEM) is in the range from 5-30 nm, the x-ray crystal grain size derived by x-ray diffraction (DX) is no less than 4 nm, the particles of are dispersed from each other at a distance, and the dispersion on the composition of the individual particles is kept within a stipulated range.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 4, 2009
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventor: Kimitaka Sato
  • Patent number: 7569116
    Abstract: A Co—Cr—Mo-based alloy includes: 63 mass %?Co<68 mass %; 15 mass %?Cr<26 mass %; 10 mass %?Mo<19 mass %; and the balance of inevitable impurities, wherein the total amount of Cr and Mo is from 32 mass % to 37%. The mass magnetic susceptibility of the alloy is 7×4?·10?9 m3/kg or less at room temperature, and the Vickers hardness number (Hv) of the alloy is 400 or more.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: August 4, 2009
    Assignee: NHK Spring Co., Ltd.
    Inventors: Yoshiki Ono, Masashi Sakamoto
  • Patent number: 7569114
    Abstract: The object of the present invention is to provide a rare earth magnet which enables to achieve a good balance between high coercive force and high residual magnetic flux density, and its manufacturing method. The present invention provides a rare earth magnet in which a layered grain boundary phase is formed on a surface or a potion of a grain boundary of Nd2Fe14B which is a main phase of an R—Fe—B (R is a rare-earth element) based magnet, and wherein the grain boundary phase contains a fluoride compound, and wherein a thickness of the fluoride compound is 10 ?m or less, or a thickness of the fluoride compound is from 0.1 ?m to 10 ?m, and wherein the coverage of the fluoride compound over a main phase particle is 50% or more on average.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: August 4, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Matahiro Komuro, Yuichi Satsu
  • Patent number: 7566371
    Abstract: Non-oriented electrical steel sheet remarkably improved in magnetic properties in the rolling direction by a method superior in cost and productivity, that is, non-oriented electrical steel sheet excellent in magnetic properties in the rolling direction comprising, by wt %, Si in an amount of 2.0% or less, Mn in 3.0% or less, Al in 1.0% to 3.0%, at least one of Sn, Sb, Cu, Ni, Cr, P, REM, Ca, and Mg in a total of 0.002% to 0.5%, and a balance of Fe and unavoidable impurities and having a ratio (B50L/Bs) of the magnetic flux density B50L in the rolling direction after stress relief annealing and a saturated magnetic flux density Bs of 0.85 or more and an core loss W15/50L of 2.0 W/kg or less, produced by the method of annealing the hot band at 800° C. to 1100° C. for 30 seconds or more to achieve a crystal grain size after final annealing of 50 ?m or less, skin pass rolling the sheet by a reduction of 3% to 10%, then stress relief annealing it. Further, a cold rolling reduction of 60% to 75% is preferable.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 28, 2009
    Assignee: Nippon Steel Corporation
    Inventors: Yoshihiro Arita, Kenichi Murakami
  • Patent number: 7564152
    Abstract: An elongate structure having a magnetostrictive material composition is subjected to tensile stress in the longitudinal-axial direction, thereby generally orienting the magnetization of the elongate structure in the longitudinal-axial direction. Electrical current is conducted through the elongate structure and/or through at least one adjacent elongate conductor, thereby generally orienting the magnetization of the elongate structure in the transverse direction, generally in parallel with the transverse direction of the magnetic field concomitant the conduction of current through the elongate structure. The elongate structure magnetostrictively contracts due to the (generally 90°) repositioning of the magnetization of the elongate structure.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: July 21, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Arthur E. Clark, James B. Restorff, Marilyn Wun-Fogle
  • Patent number: 7563331
    Abstract: The invention relates to a method and to a device for carrying out a manufacturing process in which all magnet cores to be produced are first continuously crystallized. Depending on whether the required hysteresis loops should be round, flat or rectangular, the magnet cores are either immediately finished, that is enclosed in housings, conditioned to a rectangular hysteresis loop in a direct-axis magnetic field or to a flat hysteresis loop in a magnetic cross-field and then finished.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: July 21, 2009
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Jörg Petzold, Volker Kleespies, Hans-Rainier Hilzinger
  • Patent number: 7563330
    Abstract: A powder raw material is prepared by mixing at least two kinds of powders selected from a powder A, a powder B, a powder C, and a powder D. A sintered body of a magnetic material having an NaZn13 crystal structure phase is formed by heating the powder raw material while applying a pressure treatment. The powder A is at least one of elemental powder of element R selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb. The powder B is at least one of elemental powder of element T selected from Fe, Co, Ni, Mn, and Cr. The powder C is at least one of elemental powder of element M selected from Si, B, C, Ge, Al, Ga, and In. The powder D is a compound powder composed of at least two kinds of elements selected from the element R, the element T, and the element M.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: July 21, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyuki Tsuji, Akiko Saito, Tadahiko Kobayashi
  • Patent number: 7560087
    Abstract: Process for the stabilization of mercury metal by reaction of the mercury metal with sulphur in the solid state, in which the mercury and the sulphur are brought into contact, at an Hg/S molar ratio of 1/1 to 1/3, in a reactor integral with a hollow pipe in fluid communication with the interior space of the said reactor, the said hollow pipe comprising a first end connected to the wall of the said reactor and a second end distant from the said reactor; the said hollow pipe and the said reactor being hermetically sealed, the said hollow pipe being provided with rotating means external to the said pipe and to the said reactor for rotating the said reactor and the said pipe around the axis of the said pipe, and the said hollow pipe being provided, at its end distant from the reactor, with means for introducing the sulphur and the mercury inside the reactor and discharging the reaction products.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: July 14, 2009
    Assignees: STMI Societe des Techniques en Milieu Ionisant, Universite Paris sud (Paris XI), Centre National de la Recherche Scientifique
    Inventors: Christelle Riviere-Huc, Vincent Huc, Emilie Bosse
  • Patent number: 7553384
    Abstract: A method for locally heat-treating a gas turbine engine superalloy article to improve resistance to strain-induced fatigue of the article is disclosed. The method comprises providing a gas turbine engine superalloy article having a gamma prime solvus temperature; and locally over aging only a selected portion of the article to locally improve fatigue resistance at the selected portion of the article, wherein the local over age cycle includes heating at about 843° C. for about 3 to 4 hours.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: June 30, 2009
    Assignee: General Electric Company
    Inventor: Jon Raymond Groh