Patents Examined by John Sheehan
  • Patent number: 6896745
    Abstract: Disclosed herein is a magnetic powder which can provide magnets having excellent magnetic properties and having excellent reliability especially excellent heat stability. The magnetic powder is composed of an alloy composition represented by Rx(Fe1?aCoa)100?x?y?zByMz (where R is at least one kind of rare-earth element excepting Dy, M is at least one kind of element selected from Ti, Cr, Nb, V, Mo, Hf, W, Mn, Zr and Dy, x is 7.1-9.9 at %, y is 4.6-8.0 at %, z is 0.1-3.0 at %, and a is 0-0.30), and the magnetic powder being constituted from a composite structure having a soft magnetic phase and a hard magnetic phase, wherein when the magnetic powder is mixed with a binding resin and then the mixture is subjected to injection molding or extrusion molding to form a bonded magnet having a density ?[Mg/m3], the maximum magnetic energy product (BH)max[kJ/m3] of the bonded magnet at a room temperature satisfies the relationship represented by the formula (BH)max/?2[×10?9J·m3/g2]?2.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: May 24, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6752879
    Abstract: A compact is produced from an alloy powder for R—Fe—B type rare earth magnets including particles having a size in a range of about 2.0 &mgr;m to about 5.0 &mgr;m as measured by a light scattering method using a Fraunhofer forward scattering in a proportion of approximately 45 vol. % or more and particles having a size larger than about 10 &mgr;m in a proportion of less than about 1 vol. %. The compact is then sintered to obtain a R—Fe—B type rare earth magnet having an average crystal grain size in a range of about 5 &mgr;m to about 7.5 &mgr;m, and an oxygen concentration in a range of about 2.2 at. % to about 3.0 at. %.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: June 22, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Shigeru Takaki, Ken Makita
  • Patent number: 6750723
    Abstract: A magnetic powder core comprises a molded article of a mixture of a glassy alloy powder and an insulating material. The glassy alloy comprises Fe and at least one element selected from Al, P, C, Si, and B, and has a texture primarily composed of an amorphous phase. The glassy alloy exhibits a temperature difference &Dgr;Tx, which is represented by the equation &Dgr;Tx=Tx−Tg, of at least 20 K in a supercooled liquid, wherein Tx indicates the crystallization temperature and Tg indicates the glass transition temperature. The magnetic core precursor is produced mixing the glassy alloy powder with the insulating material, compacting the mixture to form a magnetic core precursor, and annealing the magnetic core precursor at a temperature in the range between (Tg−170) K and Tg K to relieve the internal stress of the magnetic core precursor. The glassy alloy exhibits low coercive force and low core loss.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: June 15, 2004
    Assignee: Alps Electric Co., Ltd.
    Inventors: Shoji Yoshida, Takao Mizushima, Yutaka Naito
  • Patent number: 6749693
    Abstract: In a method of producing a strip suitable for further processing to yield a (110)[001] grain oriented electrical steel from a thin strip such as a continuously cast thin strip the thin cast strip is processed to promote recrystallization from the surface layer of the strip (S=0) into the quarter thickness of the strip (S=0.2 to 0.3). The process parameters are selected so that the strain/recrystallization parameter (K*)−1, ≧about 6500 and wherein, ( K * ) - 1 = ( T HBA ) ⁢ ln ⁡ [ e . 0.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: June 15, 2004
    Assignee: AK Properties
    Inventors: Jerry W. Schoen, Glenn S. Huppi
  • Patent number: 6740291
    Abstract: A nickel-chromium-molybdenum alloy that is thermally stable and resistant to wet process phosphoric acid and chloride induced localized attack contains in weight percent 31.0 to 34.5% chromium, 7.0 to 10.0% molybdenum, up to 0.2% nitrogen, up to 3.0% iron, up to 1.0% manganese, up to 0.4% aluminum, up to 0.75% silicon, up to 0.1% carbon with the balance nickel plus impurities.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: May 25, 2004
    Assignee: Haynes International, Inc.
    Inventor: Paul Crook
  • Patent number: 6740292
    Abstract: The invention relates to a nickel-base superalloy. The alloy according to the invention is characterized by the following chemical composition (details in % by weight): 7.7-8.3 Cr, 5.0-5.25 Co, 2.0-2.1 Mo, 7.8-8.3 W, 5.8-6.1 Ta, 4.9-5.1 Al, 1.3-1.4 Ti, 0.11-0.15 Si, 0.11-0.15 Hf, 200-750, preferably 200-300 ppm of C, 50-400, preferably 50-100 ppm of B, remainder Ni and production-related impurities. It is distinguished by very good castability and a high resistance to oxidation.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: May 25, 2004
    Assignee: Alstom Technology Ltd
    Inventors: Douglas Arrell, Mohamed Nazmy
  • Patent number: 6736909
    Abstract: A bulk exchange-spring magnet 12, a method of producing the same, and a device 20 incorporating the bulk exchange-spring magnet are disclosed. The magnet includes magnet powders 10 having hard and soft phases, and boron and oxygen atoms which cohere in boundary areas 16 between grains 14 of the densified magnet powders 10. In a production method, the magnet powders 10 are compacted so as to incorporate boron and oxygen atoms into the boundary areas 16 and are heated under a compacted state of the magnet powders at varying operating temperatures for a given time period. This results in formation of a highly densified magnet at a lower potential operating temperature for a shorter time period without the grain growth. The device 20 includes the bulk exchange-spring magnet 12 containing the boron and oxygen atoms cohering between the grains of the densified magnet powders.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: May 18, 2004
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Norihisa Waki, Hideaki Ono, Munekatsu Shimada, Tatsuo Sugiyama
  • Patent number: 6733599
    Abstract: The present invention provides a method for producing a grain-oriented silicon steel sheet not having inorganic mineral films by using an annealing separator capable of preventing the inorganic mineral films composed of forsterite (Mg2SiO4), and so on, from forming during final annealing, comprising the steps of decarburization annealing followed by coating of annealing separator and final annealing, wherein alumina powder calcined at a calcination temperature of 900 to 1,400° C., or further having a BET specific surface area of 1 to 100 m2/g, an oil absorption of 1 to 70 ml/100 g, and/or having a gamma ratio of 0.001 to 2.0, is used as the annealing separator. Magnesia having a BET specific surface area of 0.5 to 5 m2/g may be added to said alumina powder.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: May 11, 2004
    Assignee: Nippon Steel Corporation
    Inventors: Hiroyasu Fujii, Yoshiyuki Ushigami, Shuichi Nakamura, Kenichi Murakami, Norihiro Yamamoto, Kiyoshi Sawano, Shuichi Yamazaki
  • Patent number: 6726877
    Abstract: Silver alloys having properties of fire scale resistance, reduced porosity and oxide formation and reduced grain size relative to traditional sterling silver alloys and useful work hardening performance are provided, comprising about 80-99.0% by weight silver, about 0.5-6% by weight copper, about 0.02-7% by weight of a firescale resisting additive selected from one or a mixture of zinc and silicon, and about 0.01-2.5% by weight germanium. Master alloys for production of the above alloys are also provided for, having the general composition comprising, by weight, about 2.5-99.85% copper, about 0.1-35% zinc or silicon or mixtures thereof, and about 0.05-12.5% germanium.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: April 27, 2004
    Inventor: Anthony Phillip Eccles
  • Patent number: 6709533
    Abstract: This invention aims to provide a manufacturing method of an anisotropic magnet powder from which a bonded magnet with an improved loss of magnetization due to structural changes can be achieved. This is achieved by employing a low-temperature hydrogenation process, high-temperature hydrogenation process and the first evacuation process to an RFeB material (R: rare earth element) to manufacture a hydride powder (RFeBHx); the obtained RFeBHx powder (the precursory anisotropic magnet powder) is subsequently blended with a diffusion powder composed of hydride of dysprosium or the like and a diffusion heat-treatment process and a dehydrogenation process are employed. Through this series of processes, an anisotropic magnet powder with a great coercivity and a great degree of anisotropy can be achieved.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: March 23, 2004
    Assignee: Aichi Steel Corporation
    Inventors: Yoshinobu Honkura, Norihiko Hamada, Chisato Mishima
  • Patent number: 6706241
    Abstract: The invention relates to a nickel-base superalloy for producing single-crystal components. The alloy according to the invention is characterized by the following chemical composition (details in % by weight): 7-13 Cr, 4-10 Co, 0.5-2 Mo, 2-8 W, 4-6 Ta, 3-6 Al, 1-4 Ti, 0.1-6 Ru, 0.01-0.5 Hf, 0.001-0.15 Si, 0-700 ppm C, 0-300 ppm B, remainder Ni and production-related impurities.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: March 16, 2004
    Assignee: Alstom Technology Ltd
    Inventors: Robert Baumann, David Duhl, Andreas Kuenzler, Mohamed Nazmy
  • Patent number: 6706124
    Abstract: An iron-based rare earth alloy magnet has a composition represented by the general formula: (Fe1-mTm)100-x-y-zQxRyMz, where T is at least one element selected from the group consisting of Co and Ni; Q is at least one element selected from the group consisting of B and C; R is at least one rare earth element substantially excluding La and Ce; and M is at least one metal element selected from the group consisting of Ti, Zr and Hf and always includes Ti. In this formula, the mole fractions x, y, z and m meet the inequalities of: 10 at %<x≦20 at %; 6 at %≦y<10 at %; 0.1 at %≦z≦12 at %; and 0≦m≦0.5, respectively.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: March 16, 2004
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Toshio Miyoshi, Satoshi Hirosawa, Yasutaka Shigemoto, Yusuke Shioya
  • Patent number: 6702906
    Abstract: A Ni-base heat resistant alloy excellent in weldability and strength at elevated temperatures and suited for use in manufacturing cracking furnace tubes and reformer furnace tubes to be used in ethylene plants as well as a welded joint therefor is provided. The alloy of the invention is a Ni-base heat-resistant alloy, which comprises C: not more than 0.1%, Si: not more than 2%, Mn: not more than 2%, P: not more than 0.025%, S: not more than 0.005%, N: not more than 0.04%, Cr: 10 to 30%, Al: 2.1 to less than 4.5%, and Mo: 2.5 to 15% or W: 2.5 to 9% or Mo and W: 2.5 to 15% in total, and satisfies the relation (1) given below: (104Si+1980P+1980S+9Al+15Ti+11Nb+1.8W+11600B)≦{1.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: March 9, 2004
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kazuhiro Ogawa, Kazuyuki Kitamura, Hirokazu Okada, Yoshitaka Nishiyama
  • Patent number: 6699335
    Abstract: Machine part is constituted with steel with the carbon content of 0.2% or more and reduced with the hydrogen content after hardening by a heat treatment to 0.04 ppm or less. Further, hardness after hardening by the heat treatment is made to Hv 450 or more. Since such a machine part is excellent in the super long life fatigue characteristics, it can be used suitably as a bearing ring or a rolling element of a rolling bearing.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: March 2, 2004
    Assignees: NSK Ltd.
    Inventors: Yukitaka Murakami, Yasuo Murakami
  • Patent number: 6699332
    Abstract: A method of producing a magnetic recording medium comprising the steps of providing a substrate having a layer of a non-magnetic material that can be converted into a magnetic state by annealing, and then converting selected portions of the non-magnetic layer to a magnetic state by subjecting them to annealing by directing a focussed beam of radiation onto the substrate to form a patterned magnetic layer comprising an ordered array of magnetic regions separated by non-magnetic regions.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: March 2, 2004
    Assignee: Data Storage Institute
    Inventors: Seidikkurippu N. Piramanayagam, Jian Ping Wang
  • Patent number: 6695929
    Abstract: A melt of an iron-based rare earth material alloy, represented by (Fe1-mTm)100-x-y-zQxRyMz, is prepared, wherein T is Co and/or Ni; Q is B and/or C; R is selected from Y (yttrium) and the rare earth elements; M is selected from Al, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb; 10≦x≦30 at %; 2%≦y<10 at %; 0≦z≦10 at % and 0≦m≦0.5. The melt is fed onto a guide to form a flow of the melt thereon and move the melt onto a melt/chill roller contact region, where the melt is rapidly cooled by the chill roller to make a rapidly solidified alloy. An oxygen concentration of the melt yet to be fed onto the guide is controlled at about 3,000 ppm or less in mass percentage.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: February 24, 2004
    Assignee: Sumitomo Special Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Satoshi Hirosawa
  • Patent number: 6695934
    Abstract: A copper base alloy consisting essentially of tin in an amount from about 0.1 to about 1.5% by weight, phosphorous in an amount from about 0.01 to about 0.35% by weight, iron in an amount from about 0.01 to about 0.8% by weight, zinc in an amount from about 1.0 to about 15% by weight, and the balance essentially copper, including phosphide particles uniformly distributed throughout the matrix, is described. The alloy is characterized by an excellent combination of physical properties. The process of forming the copper base alloy described herein includes casting, homogenizing, rolling, process annealing and stress relief annealing.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: February 24, 2004
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Patent number: 6692583
    Abstract: A conversion coating composition and a method of applying the conversion coating composition to magnesium and magnesium alloy articles prior to painting to prevent corrosion. The conversion coating composition comprises a source of vanadate ions, a material comprising phosphorus, and nitric acid or a source of nitrate ions. In addition, the composition may also contain boric acid or a source of borate ions and a source of fluoride ions or a source of fluoroborate ions.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: February 17, 2004
    Inventors: Jon Bengston, Mark Wojtaszek, Gerald Wojcik, Massimo Dimarco
  • Patent number: 6679952
    Abstract: A method of coating aluminum and aluminum alloy substrates not only imparts a corrosion resistance comparable or even superior to that afforded by chromate treatment but also improves the adhesion to the coating film, while the luster of aluminum is fully retained, notwithstanding the use of a chromium-free treating solution, resulting in an improved coated article with the coated surface having a metallic luster. The method comprises treating an aluminum or aluminum alloy substrate with an acidic solution containing sulfuric acid and 0.2 to 0.4 g/L of a ferric ion and having a pH value of 0.6 to 2.0, subjecting the same to chemical conversion treatment with an acidic coat-forming agent containing 0.01 to 0.125 g/L of a zirconium or titanium ion, 0.01 to 1.0 g/L of a phosphate ion, and 0.01 to 0.5 g/L of a fluoride ion and having a pH value of 1.5 to 4.0, followed by coating.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: January 20, 2004
    Assignees: Topy Industries, Limited, Nippon Paint Co., Ltd.
    Inventors: Toru Shimizu, Takayuki Sato, Tatsuya Oguri, Keiji Maetsuji, Kazuo Nobe
  • Patent number: 6680129
    Abstract: Chain parts and other steel articles are provided with hard, wear-resistant carbide coatings by tumbling them in a heated retort with a particulate mix which includes a source of vanadium and/or niobium. The steel substrate comprises a steel having at least 0.2% carbon, preferably 0.7-1.2%. Where the chromium content of the steel is 4-12%, preferably 4-8%, the chemical deposition process includes drawing a small amount of chromium from the steel substrate into the vanadium or niobium carbide coating, where it is distributed substantially homogeneously, helping to provide adhesion strength to the coating.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: January 20, 2004
    Assignee: BorgWarner Inc.
    Inventors: Yumin Wang, Yoshito Hanayama, Doug Fornell, Naosumi Tada, Kunihiko Mishima