Patents Examined by Jonathan Crepeau
  • Patent number: 11152669
    Abstract: A scalable battery module (10, 210) includes a plurality of similarly configured cell groupings (1251, 1851), a plurality of framed heatsinlc assemblies (50, 250), and a plurality of jumper tabs (32, 232). Each cell grouping (1251, 1751) includes a plurality of cell packs (52, 1752) electrically coupled in parallel including a negative terminal (70, 270) and a positive terminal (64, 264). Each plurality of framed heatsink assemblies (50, 250) is disposed between one cell pack (52, 1752) of the plurality of cell packs of each cell groupings (1251, 1751) and an adjacent cell pack (52, 1752) of the plurality of cell packs of each cell grouping (1251, 1751) and includes a thermally conductive sheet portion. Each of the plurality of jumper tabs (32, 232) electrically couples a negative terminal (70, 270) of one of the plurality of cell groupings (1251, 1851) to a positive terminal (64, 264) of an adjacent cell grouping (1251, 1851).
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: October 19, 2021
    Assignee: Enerdel, Inc.
    Inventors: Derrick Buck, Bruce Silk
  • Patent number: 11145928
    Abstract: A battery pack includes a plurality of electrical energy storage cells positioned in a parallel layout in a protective casing. The protective casing has a peripheral wall and is closed at two opposite ends by a lid. Each of the lids has at least one venting hole for gases that that can form inside the protective casing, and at least one layer of metallic material, through which the gases are intended to flow, is disposed between the internal face of each of the lids and the cells.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: October 12, 2021
    Assignee: OROLIA SAS
    Inventors: Vincent Guillemard, Michel Penn
  • Patent number: 11139536
    Abstract: A connection module includes a busbar holding module, and an external connection busbar holding portion that is disposed on the busbar holding module. The busbar holding module includes an insulating protector configured to hold a plurality of busbars. The external connection busbar holding portion includes a first external connection busbar having an elongated shape, a second external connection busbar to which an external connection component is to be bolted, and an external connection busbar protector. The insulating protector includes a first engaging portion configured to be engaged with the external connection busbar protector, and the external connection busbar protector includes a first engaged portion configured to be engaged with the first engaging portion.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: October 5, 2021
    Assignees: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Naoki Fukushima, Osamu Nakayama, Katsushi Miyazaki, Seishi Kimura
  • Patent number: 11139493
    Abstract: A system and method for controlling hydrogen purging of a fuel cell are provided. The method includes calculating a hydrogen supply amount and estimating a hydrogen consumption amount. An estimated hydrogen concentration is then corrected when a difference between the calculated hydrogen supply amount and the estimated hydrogen use amount is greater than a predetermined threshold value.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: October 5, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Soon Woo Kwon, Joon Yong Lee
  • Patent number: 11127945
    Abstract: An electrode for a metal-ion battery is provided wherein the active layer of the electrode comprises a plurality of low porosity particles comprising an electroactive material selected from silicon, silicon oxide germanium, tin, aluminium and mixtures thereof and a plurality of carbon particles selected from one or more of graphite, soft carbon and hard carbon. The ratio of the D50 particles size of the carbon particles to the D50 particle diameter of the porous particles is in the range of from 1.5 to 30. Also provided are rechargeable metal-ion batteries comprising said electrode and compositions of porous particles and carbon particles which may be used to prepare the active layer of said electrode.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: September 21, 2021
    Assignee: Nexeon Limited
    Inventors: Tsuyonobu Hatazawa, Christopher Michael Friend
  • Patent number: 11121387
    Abstract: A fuel cell system comprising a fuel cell stack, an evaporator for evaporating a mixture of methanol and water to be forwarded through a catalytic reformer for producing portions of free hydrogen. The fuel cell stack being composed of a number of proton exchange membrane fuel cells each featuring electrodes in form of an anode and a cathode for delivering an electric current. The liquid fuel using a. pre-evaporator, which. partly evaporates the fuel, followed by a. nozzle, which atomizes the fuel into a fine mist, before being passed to the final evaporation zone. This configuration ensures that liquid fuel for producing thermal, neat is converted into a form that facilitates a burner to achieve a quick heating up of the fuel, cell system into production mode.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: September 14, 2021
    Inventors: Anders Risum Korsgaard, Mads Bang
  • Patent number: 11121362
    Abstract: The present application provides a positive electrode sheet for a secondary battery, the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer on a surface of the positive electrode current collector, the positive electrode active material layer includes a positive electrode active material, the positive electrode active material includes a first lithium nickel transition metal oxide and a second lithium nickel transition metal oxide, the first lithium nickel transition metal oxide includes a first substrate and a first coating layer on a surface of the first substrate, the first substrate is secondary particles, and the second lithium nickel transition metal oxide is a single crystal or single-crystal-like morphological particles.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 14, 2021
    Assignee: Contemporary Amperex Technology Co., Limited
    Inventors: Xue Leng, Rui Du, Na Liu, Yongchao Liu, Huan Ni
  • Patent number: 11114731
    Abstract: A battery module having a housing (15) including a plurality of cavities (16), each receiving a housing-element assembly (1) having: a) an electrochemical element (2) with a cylindrical container and two current output terminals (3, 4) disposed on a wall of one of the ends of the container, at least one of the two current output terminals being electrically connected to an electrical connection bar (5); b) a housing (6) in the form of a tube for receiving the electrochemical element, the housing electrically insulating the electrochemical element and having one or more indexing members (7, 8); c) a housing cover (9) provided with a means (10) for causing the electrochemical element to rotate about its longitudinal axis.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: September 7, 2021
    Assignee: SAFT
    Inventor: RĂ©mi Sazarin
  • Patent number: 11114671
    Abstract: Core-shell nanostructures with platinum overlayers conformally coating palladium nano-substrate cores and facile solution-based methods for the preparation of such core-shell nanostructures are described herein. The obtained Pd@Pt core-shell nanocatalysts showed enhanced specific and mass activities towards oxygen reduction, compared to a commercial Pt/C catalyst.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: September 7, 2021
    Assignee: Georgia Tech Research Corporation
    Inventors: Younan Xia, Shuifen Xie, Sang-Il Choi, Xue Wang, Jinho Park, Lei Zhang
  • Patent number: 11108050
    Abstract: The present invention provides a conductive material dispersed liquid including a conductive material which includes bundle-type carbon nanotubes; a dispersant which includes a hydrogenated nitrile-based rubber; and a dispersion medium, where a complex modulus (|G*| @ 1 Hz) is in a range of 20 to 500 Pa when measured by a rheometer at a frequency of 1 Hz, and a secondary battery manufactured using the same. The conductive material dispersed liquid has a controlled complex modulus to exhibit excellent dispersibility and powder resistance characteristics, and as a result, can greatly improve the output characteristics of batteries.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: August 31, 2021
    Inventors: Ye Lin Kim, Ki Yeon Jo, Jung Keun Yoo, Je Young Kim, Sang Hoon Choy, Jong Heon Seol
  • Patent number: 11101471
    Abstract: The invention relates to a method for producing a flow plate (10a; 10b) for a fuel cell, in particular a PEM fuel cell, and/or an electrolyzer, wherein the flow plate (10a; 10b) is provided with at least one flow element (12a; 12b), which is at least partially made of metal fibers (14a; 14b). According to the invention, in at least one method step, the metal fibers (14a; 14b) are aligned by means of at least one alignment unit (30a; 30b).
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 24, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Ulrich Sauter, Jan Hendrik Ohs, Stefan Schoenbauer
  • Patent number: 11101495
    Abstract: New phosphorous-based polyesters have been synthesized. When these polymers are combined with electrolyte salts, such polymer electrolytes have shown excellent electrochemical oxidation stability in lithium battery cells. Their stability along with their excellent ionic transport properties make them especially suitable as electrolytes in high energy density lithium battery cells.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: August 24, 2021
    Assignee: ROBERT BOSCH GMBH
    Inventors: Malar Azagarsamy, Kulandaivelu Sivanandan, Hany Basam Eitouni, Jonathan P. Mailoa, Georgy Samsonidze, Boris Kozinsky, Mordechai Kornbluth
  • Patent number: 11094925
    Abstract: Improved negative electrodes can comprise a silicon based active material blended with graphite to provide more stable cycling at high energy densities. In some embodiments, the negative electrodes comprise a blend of polyimide binder mixed with a more elastic polymer binder with a nanoscale carbon conductive additive. The silicon-based blended graphite negative electrodes can be matched with positive electrodes comprising nickel rich lithium nickel manganese cobalt oxides to form high energy density cells with good cycling properties.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 17, 2021
    Assignee: Zenlabs Energy, Inc.
    Inventors: Subramanian Venkatachalam, Sanjeev Sharma, Xianyu Iris Li, Pedro A. Hernandez-Gallegos, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Patent number: 11094999
    Abstract: Provided herein are a variety of porous separator materials, particularly those prepared by gas-assisted electrospray and electrospinning processes.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: August 17, 2021
    Assignee: CORNELL UNIVERSITY
    Inventors: Yong Lak Joo, Joseph M. Carlin, Soshana Smith
  • Patent number: 11081731
    Abstract: High-capacity and high-performance rechargeable batteries containing a cathode material layer having an improved surface roughness is provided. A cathode material layer is provided in which at least an upper portion of the cathode material layer is composed of nanoparticles (i.e., particles having a particle size less than 0.1 ?m). In some embodiments, a lower (or base) portion of the cathode material layer is composed of particles whose particle size is greater than the nanoparticles that form the upper portion of the cathode material layer. In other embodiments, the entirety of the cathode material layer is composed of the nanoparticles. In either embodiment, a conformal layer of a dielectric material can be disposed on a topmost surface of the upper portion of the cathode material layer. The presence of the conformal layer of dielectric material can further improve the smoothness of the cathode material layer.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: August 3, 2021
    Assignee: International Business Machines Corporation
    Inventors: Devendra K. Sadana, Yun Seog Lee, Joel P. de Souza
  • Patent number: 11075428
    Abstract: A separator and an electrochemical battery, the separator including a porous substrate; and a porous bonding layer on one surface or both surfaces of the porous substrate, wherein the porous bonding layer includes a first polyvinylidene fluoride-based polymer, the first polyvinylidene fluoride-based polymer including a polyvinylidene fluoride-based homopolymer or a polyvinylidene fluoride-based copolymer that includes a vinylidene fluoride repeating unit and a hexafluoropropylene repeating unit, and a second polyvinylidene fluoride-based polymer, the second polyvinylidene fluoride-based polymer including a vinylidene fluoride repeating unit and a (meth)acrylate repeating unit, or a vinylidene fluoride repeating unit and a repeating unit of a monomer that includes at least one of an epoxy group, a hydroxy group, a carboxyl group, an ester group, or an acid anhydride group.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 27, 2021
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Byung-Soo Kim, Sangho Lee, Jihyun Chun, Daehyun Hong, Seyeong Kang, Jinseong Park, Imhyuck Bae
  • Patent number: 11069931
    Abstract: An apparatus may store at least one object including at least one top end and at least one bottom end. The apparatus may include a container configured to store the at least one object and a pouch containing a liquid. The pouch may be configured to substantially cover the at least one top end of the at least one object when stored inside the container. The pouch may be configured to contact the at least one top end of the at least one object and to open when contacted by contents expelled from the at least one object due to thermal runaway.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: July 20, 2021
    Assignee: Federal Express Corporation
    Inventor: Mark Richard Petzinger
  • Patent number: 11063302
    Abstract: A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: July 13, 2021
    Assignee: Sakuu Corporation
    Inventor: Philip Eugene Rogren
  • Patent number: 11063266
    Abstract: A connector is moved obliquely to a first separator. An optical distance measuring device is used to optically measure an attachment position of the connector while using the first separator as a reference. A reference plane of the first separator is used as a reference. An inspection plane of the connector is also used as a reference. The inspection plane is formed to be parallel to the reference plane in the state that the connector is accurately attached to an attachment portion.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: July 13, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahiro Imanishi
  • Patent number: 11050087
    Abstract: Silane functionalized ionic liquids are disclosed as a part of an electrolyte for an electrical energy storage device including an aprotic organic solvent; an alkali metal salt; an additive; and an ionic compound including an anion and cation, wherein the cation is attached to a functional group including a silane functional group according to the base Formula (I)
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 29, 2021
    Assignee: NOHMS Technologies, Inc.
    Inventors: Surya Moganty, Gabriel Torres, Luigi Abbate, John Sinicropi, Xiaojing Zhu