Patents Examined by Jonathan Crepeau
  • Patent number: 11050082
    Abstract: A colloidal ionic-liquid electrolyte for electrochemical devices is provided. The colloidal ionic-liquid electrolyte includes a room temperature ionic-liquid, a lithium salt, and a ceramic particle phase (powder) including a high dielectric material dispersed in the ionic-liquid electrolyte, wherein the colloidal ionic-liquid electrolyte exhibits enhanced ionic conductivity in the electrochemical device compared to the ionic conductivity of the pure room temperature ionic-liquid. The high dielectric material exhibits a first dielectric constant of about 200 or more, and a first mean particle size of about 2000 nm or less. The enhanced ionic conductivity is observed in the temperature range of about 75° C. to about ?60° C. and is more pronounced at colder temperatures. In addition, the colloidal ionic-liquid electrolyte exhibits enhanced non-flammability, enhanced mechanical stability, enhanced thermal stability and suppressed flowability.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: June 29, 2021
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Stanley J. Rodrigues, Padmakar D. Kichambare
  • Patent number: 11043665
    Abstract: In a nonaqueous electrolyte secondary battery containing a silicon material as a negative electrode active material, the initial charge-discharge efficiency is improved. Negative electrode active material particles (10) according to an embodiment each contain a lithium silicate phase (11) represented by Li2zSiO(2+z) (where 0<z<2) and silicon particles (12) dispersed in the lithium silicate phase (11). In base particles (13) each containing the lithium silicate phase (11) and the silicon particles (12), preferably, a peak originating from SiO2 is not observed at 2?=25° in an XRD pattern obtained by XRD measurement of the particles.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: June 22, 2021
    Assignee: SANYO ELECTRIC CO., LTD.
    Inventors: Hiroshi Minami, Kouhei Tuduki, Atsushi Fukui, Taizou Sunano, Yoshio Kato
  • Patent number: 11043687
    Abstract: A component for an electrochemical cell is formed by additive manufacturing process. The additive manufacturing process can be repeated to produce fuel cell stack.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: June 22, 2021
    Assignee: Dana Limited
    Inventors: Christopher M. Cook, Keith C. Henegar, Jack A. Kummerow, Kelly D. Puckett, Eve S. Steigerwalt
  • Patent number: 11043722
    Abstract: A flexible rechargeable battery includes a first conductive substrate, a second conductive substrate, and a seal. The first conductive substrate includes a first protrusion. The second conductive substrate faces the first conductive substrate and includes a second protrusion. The seal is located along at least one edge of the first conductive substrate and the second conductive substrate, and includes at least one sealing metal layer and at least one sealing resin layer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: June 22, 2021
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Taesoo Lee, Junwon Suh, Jandee Kim, Jeongdoo Yi, Junggyu Nam, Jungyup Yang, Wonkyu Bang, Juhyeong Han, Bong-Kyoung Park, Juhee Sohn, Da-Un Han, Sol Choi, Seokhun Hong, Hyunhwa Song, Hyeri Eom
  • Patent number: 11038159
    Abstract: The present invention relates to a positive electrode active material for a lithium secondary battery including a lithium cobalt oxide having a core-shell structure, wherein the lithium cobalt-doped oxide of the core and the lithium cobalt-doped oxide of the shell include each independently three kinds of dopants and satisfy specific conditions, a method for producing the same, and a positive electrode and a secondary battery containing the positive electrode active material.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: June 15, 2021
    Inventors: Chi Ho Jo, Sungbin Park, Jiyoung Park, Bo Ram Lee, Jungmin Han, Hyuck Hur, Wang Mo Jung
  • Patent number: 11038161
    Abstract: A nickel-hydrogen secondary battery includes an electrode group which contains a positive electrode, a negative electrode, and a separator, wherein the negative electrode includes a negative electrode core, and a negative electrode mixture layer held by the negative electrode core, wherein the negative electrode mixture layer contains a fluororesin; a quantity of the fluororesin, expressed by a mass applied per unit area of the negative electrode, is within a range of 0.2 mg/cm2 or more and 2.0 mg/cm2 or less; and a fluororesin content which is a ratio of the fluororesin contained in a unit volume of the negative electrode mixture layer is higher in an inner layer portion than in an outer layer portion in the negative electrode mixture layer.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 15, 2021
    Assignee: FDK CORPORATION
    Inventors: Shota Ohata, Jun Ishida, Toshiki Sato, Akira Saguchi
  • Patent number: 11031632
    Abstract: The present invention relates to a method for recovering a positive electrode active material from a lithium secondary battery including: 1) separating a positive electrode into a collector and a positive electrode part; 2) removing an organic substance by firing the separated positive electrode part; 3) washing the fired resultant and removing remaining fluorine (F); 4) adding a lithium-containing material into the washed resultant and firing to recover a lithium transition metal oxide.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 8, 2021
    Inventors: Dong Hun Lee, Dae Jin Lee, Ji Hoon Ryu, Gi Beom Han, Dong Hwi Kim, Wang Mo Jung, Sang Wook Lee, Eun Sol Lho
  • Patent number: 11027978
    Abstract: A silicon nanoparticle-containing hydrogen polysilsesquioxane calcined product to be covered by the invention, represented by general formula SiOx2Hy2 (0.3<x2<1.5, 0.01<y2<0.35), containing 5% by weight to 65% by weight of silicon nanoparticles having a volume-basis mean particle size of more than 10 nanometers and less than 500 nanometers, having a chemical bond between a surface of the silicon nanoparticles and a silicon oxide structure derived from hydrogen polysilsesquioxane, having a Si—H bond, and substantially containing no carbon is silicon oxide applicable to a negative electrode active material for a secondary battery having excellent discharging capacity, initial charging and discharging efficiency and cycle characteristics.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: June 8, 2021
    Assignees: JNC CORPORATION, JNC PETROCHEMICAL CORPORATION
    Inventors: Yoshihito Takano, Tetsuro Kizaki, Hirotsuna Yamada, Masakazu Kondo, Akira Takahashi
  • Patent number: 11024864
    Abstract: An assembly device may be employed to vertically stack a fuel cell stack having alternating membrane-electrode units and bipolar plates. The assembly device may include a base plate, a cover plate, and connecting pieces positioned at each of two end faces of the base plate and cover plate. A substantially cuboidal assembly chamber may be defined inside the assembly device by a plurality of vertically oriented locating strips, in order, via the locating strips, to position the membrane-electrode units and bipolar plates relative to one another during stacking. The assembly device may further include a drive for synchronous displacement of the locating strips.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: June 1, 2021
    Assignees: THYSSENKRUPP SYSTEM ENGINEERING GMBH, THYSSENKRUPP AG
    Inventor: Andreas Walter
  • Patent number: 11024853
    Abstract: According to the present disclosure, there is provided a technique making it possible to improve suitably the performance of a nonaqueous electrolyte secondary cell in which a SEI film is formed on the surface of a negative electrode active material. The nonaqueous electrolyte secondary cell disclosed herein includes a positive electrode 10, a negative electrode 20, and a nonaqueous electrolytic solution, wherein a negative electrode SEI film 29 including at least a LiBOB skeleton and a fluorosulfonic acid skeleton is formed on the surface of a negative electrode active material 28, and a positive electrode SEI film 19 including at least a phosphoric acid skeleton is formed on the surface of a positive electrode active material 18.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: June 1, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kenta Ishii, Masahiro Morita, Risa Sato, Ryo Hanasaki, Yusuke Onoda, Koji Takahata, Atsushi Watarai
  • Patent number: 11024893
    Abstract: A battery of modular construction that stores electrical energy includes a battery housing, a module assembly including at least two battery modules, each with at least one positive and at least one negative electrode, and a pressing means. A method of safety operation of the battery includes equipping the battery with at least one safety means that triggers a reduction in the mechanical pressure exerted onto the battery modules when there is a defect in at least one of the battery modules.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: June 1, 2021
    Assignees: VARTA Microbattery GmbH, VW Kraftwerk GmbH
    Inventors: Torsten Knape, Werner Schreiber
  • Patent number: 11024922
    Abstract: Disclosed herein is a cap assembly disposed on an open upper end part of a cylindrical can of a battery, the battery being configured to have an electrode assembly mounted in the cylindrical can, the cap assembly including a safety vent configured to rupture in order to exhaust gas when the interior pressure of the battery reaches a predetermined pressure limit, an upwardly-protruding cap plate disposed on the upper part of the safety vent, the cap plate having a through-opening configured to receive the gas exhausted therethrough, a current interrupt member attached to the lower end of the safety vent, the current interrupt member configured to interrupt electric current when the interior pressure of the battery reaches the predetermined pressure limit, and a guide member attached to the inside of the cap plate, the guide member being configured to prevent escape of a ruptured portion of the safety vent.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: June 1, 2021
    Inventors: Sang Gu Ji, Sang Uck Kim, Cheon Hee Bok, Myung An Lee, Geun Young Park, Yong Han Kim, Da Na Kim
  • Patent number: 11018399
    Abstract: The invention relates to a thermoplastic polymer-based battery separator, which contains a compound of formula R (OR1)n(COOMx+1/x)m. In said formula, R represents a non-aromatic hydrocarbon group comprising between 10 and 4,200 carbon atoms, which can be interrupted by oxygen atoms, R1 represents H, —(CH2)kCOOMx+1/x or —(CH2)k—SO3Mx+1/x, whereby k stands for 1 or 2, M represents an alkali or earth alkaline metal ion, H+ or NH4+, whereby not all variables of M are defined simultaneously as H+, n stands for 0 or 1, m stands for 0 or a whole number from 10 to 1,400 and x stands for 1 or 2. The ratio of oxygen atoms to carbon atoms in the compound according to the aforementioned formula ranges between 1:1.5 and 1:30 and n and m cannot simultaneously represent zero.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: May 25, 2021
    Assignee: Daramic, LLC
    Inventors: Jorg Deiters, Klaus Heinrich Ihmels
  • Patent number: 11011774
    Abstract: There is provided a lithium ion secondary battery having excellent cycle characteristics at a high temperature and comprising lithium nickel composite oxides, in which the Ni content is high, in a positive electrode. The present invention relates to a lithium ion secondary battery having a positive electrode, a negative electrode and an electrolyte solution, wherein the positive electrode comprises a lithium nickel complex oxide denoted by the general formula, LiNixCoyMnzO2, wherein x, y, and z are respectively 0.75?x?0.85, 0.05?y?0.15, and 0.10?z?0.20.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: May 18, 2021
    Assignee: NEC CORPORATION
    Inventor: Takeshi Azami
  • Patent number: 11011761
    Abstract: A fuel cell system includes: a fuel cell stack of fuel cells that generate electricity by electrochemical reaction between hydrogen that is a fuel gas and oxygen that is an oxidant gas; an expander that is provided on a supply path of the fuel gas to the fuel cell stack, and at which, due to the fuel gas that is in a high-pressure state being supplied thereto, the fuel gas is expanded and the pressure thereof is reduced, and, due to the fuel gas being expanded and the pressure thereof being reduced, internal energy of the fuel gas is converted into mechanical energy; and a heating device that is provided further toward an upstream side of the supply path than the expander, and that heats the fuel gas.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: May 18, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Masakatsu Tsubouchi
  • Patent number: 11011747
    Abstract: A lithium metal oxide powder for a cathode material in a rechargeable battery, consisting of a core and a surface layer, the surface layer being delimited by an outer and an inner interface, the inner interface being in contact with the core, the core having a layered crystal structure comprising the elements Li, M and oxygen, wherein M has the formula M=(Niz (Ni1/2 Mn1/2)y Cox)1-k Ak, with 0.15?x?0.30, 0.20?z?0.55, x+y+z=1 and 0<k?0.1, wherein the Li content is stoichiometrically controlled with a molar ratio 0.95?Li:M?1.10; wherein A is at least one dopant and comprises Al; wherein the core has an Al content of 0.3-3 mol % and a F content of less than 0.05 mol %; and wherein the surface layer has an Al content that increases continuously from the Al content of the core at the inner interface to at least 10 mol % at the outer interface, and a F content that increases continuously from less than 0.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: May 18, 2021
    Assignees: Umicore, Umicore Korea Ltd.
    Inventors: Xin Xia, Jens Paulsen, JiHye Kim, Song-Yi Han
  • Patent number: 11011751
    Abstract: A compound having a layered structure that is used for a positive electrode active material for a lithium ion secondary battery achieves both a high energy density and a high cyclability. The positive electrode active material for a lithium ion secondary battery contains a compound having a layered structure belonging to a space group R-3m, in which the compound having a layered structure is represented by a compositional formula: Li1+aM1O2+? wherein M1 represents a metal element or metal elements other than Li, and contains at least Ni, ?0.03?a?0.10, and ?0.1<?<0.1, a proportion of Ni in M1 is larger than 70 atom %, and a site occupancy of a transition metal or transition metals at a 3a site obtained by structural analysis by a Rietveld method is less than 2%, and a content of residual lithium hydroxide in the positive electrode active material is 1 mass % or less.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: May 18, 2021
    Assignee: HITACHI METALS, LTD.
    Inventors: Akira Gunji, Tatsuya Toyama, Shin Takahashi, Takashi Nakabayashi, Shuichi Takano, Xiaoliang Feng, Sho Furutsuki, Hisato Tokoro
  • Patent number: 11011738
    Abstract: Provided is a method for producing a negative electrode by using a negative electrode active material and ceramic particles, the method ensuring satisfactory coatability of the paste and high peel strength and hardness of the obtained negative electrode active material layer. The method for producing a negative electrode disclosed herein includes a step of coating a negative electrode paste including a negative electrode active material and ceramic particles on a negative electrode current collector; a step of drying the coated negative electrode paste to form a negative electrode active material layer; and a step of pressing the negative electrode active material layer. The ceramic particles have an aspect ratio of 1.5 or more and 20 or less. The ceramic particles have a short side length of ? or less of an average particle diameter of the negative electrode active material.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: May 18, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kazuhisa Takeda, Yuji Yokoyama, Keisuke Ohara
  • Patent number: 11005138
    Abstract: A battery module includes a plurality of single cells, a battery chamber, an exhaust chamber, a partition wall, a smoke exhaust cover and a seal member. The exhaust chamber is provided adjacently to the battery chamber. Gas released from the single cells flows through the exhaust chamber. The exhaust chamber has one or more exhaust holes configured to release the gas to an outside. The partition wall isolates the exhaust chamber and the battery chamber from each other. The smoke exhaust cover is arranged so as to lace the partition wall. The exhaust chamber is surrounded by the partition wall, the smoke exhaust cover and the seal member. The smoke exhaust cover has a protective protrusion at a location between the seal member and the exhaust valves adjacent to the seal member. The protective protrusion is configured upright from the smoke exhaust cover toward the partition wall.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: May 11, 2021
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Satoshi Morioka
  • Patent number: 11005145
    Abstract: This disclosure relates to safety plugs for a battery of an electrified vehicle. An example battery includes a first battery module adjacent a second battery module, with each battery module having a respective housing. Further, the first battery module includes a first electrical contact and the second battery module includes a second electrical contact configured to electrically connect to the first electrical contact in a normal operating condition. The first and second electrical contacts are biased away from one another in a first direction, and the first and second electrical contacts are held together by a positive locking arrangement in the normal operating condition. Additionally, the first and second electrical contacts are configured to move out of contact with one another upon relative movement of the first and second battery modules in a second direction transverse to the first direction.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: May 11, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Marius Sawatzki, Daniel Meckenstock, Joergen Hilmann