Patents Examined by Jophy S Koshy
  • Patent number: 10266931
    Abstract: An aluminum alloy is provided that includes magnesium (Mg) of about 8.0 wt % to 10.5 wt %, silicon (Si) of about 1.9 wt % to 3.4 wt %, copper (Cu) of about 0.4 wt % to 2.0 wt %, and a balance of Al. In addition, a vehicle part is manufactured using the same aluminum alloy.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: April 23, 2019
    Assignee: Hyundai Motor Company
    Inventors: Hee Sam Kang, Eun Ji Hong
  • Patent number: 10246757
    Abstract: A bearing part according the present invention includes, as the chemical composition, by mass %, C: 0.95% to 1.10%, Si: 0.10% to 0.70%, Mn: 0.20% to 1.20%, Cr: 0.90% to 1.60%, Al: 0.010% to 0.100%, N: 0.003% to 0.030%, P: 0.025% or less, S: 0.025% or less, O: 0.0010% or less, and optionally Mo: 0.25% or less, B: 0.0050% or less, Cu: 1.0% or less, Ni: 3.0% or less, and Ca: 0.0015% or less, and a remainder including Fe and impurities; metallographic structure includes a retained austenite, a spherical cementite and a martensite; an amount of the retained austenite is 15% to 25%, by volume %; an average grain size of prior-austenite is 8.0 ?m or less; and a number density of a void having a circle equivalent diameter of 0.02 ?m to 3.0 ?m is 2000 mm?2 or less in the metallographic structure.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: April 2, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Masashi Sakamoto, Junichi Kodama, Yutaka Neishi
  • Patent number: 10240225
    Abstract: Disclosed herein is a technique to reduce the residual stress of a steel material while improving the mechanical property and the corrosion resistance of the material. A steel material is provided that includes a plurality of ferrite crystal grains, and a laminar iron-rich phase formed at unidirectionally occurring grain boundaries of all grain boundaries of the ferrite crystal grains. A material processing method is provided that includes: heating a steel material that contains a plurality of ferrite crystal grains; applying a magnetic field to a heated portion while heating the steel material; applying an electric field to the heated portion in a direction that crosses the direction of the applied magnetic field while heating the steel material; and measuring a displacement occurring in the steel material under the magnetic field and the electric field.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: March 26, 2019
    Assignee: HITACHI, LTD.
    Inventors: Matahiro Komuro, Masafumi Noujima, Naoya Okizaki
  • Patent number: 10240219
    Abstract: Disclosed is a high frequency heat treatment method of hot-stamping-treated ultra-high strength parts, which comprises: a first step of heating the parts until the temperature of a heat treatment zone thereof becomes the AC3 transformation point or higher; a second step of maintaining the temperature until phase transformation of the heat treatment zone to austenite is completed; and a third step of cooling the heat treatment zone to transform the structure thereof to ferrite-pearlite. The present method improves the energy absorbing efficiency by increasing the parts' elongation ratio by locally forming a softening structure which absorbs energy.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 26, 2019
    Assignee: Hyundai Motor Company
    Inventors: Seung-Hyun Hong, Ji-Hong Yoo
  • Patent number: 10213879
    Abstract: A solder alloy has an alloy composition consisting of, in mass %: Bi: 0.1 to 0.8%; Ag: 0 to 0.3%; Cu: 0 to 0.7%; P: 0.001 to 0.1%, with the balance being Sn. A total amount of Ag and Bi is from 0.3 to 0.8% in the alloy composition.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: February 26, 2019
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Shunsaku Yoshikawa, Hikaru Nomura
  • Patent number: 10174410
    Abstract: A heat-resistant molybdenum alloy of this invention comprises a first phase containing Mo as a main component and a second phase comprising a Mo—Si—B-based intermetallic compound particle phase, wherein the balance is an inevitable impurity and wherein the Si content is 0.05 mass % or more and 0.80 mass % or less and the B content is 0.04 mass % or more and 0.60 mass % or less.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 8, 2019
    Assignee: A.L.M.T. Corp.
    Inventors: Takanori Kadokura, Hidenobu Nishino, Ayuri Tsuji, Shigekazu Yamazaki, Akihiko Ikegaya
  • Patent number: 10167538
    Abstract: A steel pipe, consisting of, in terms of mass %: from 0.06% to 0.25% of C, 0.50% or less of Si, 1.00% to 1.80% of Mn, 0.030% or less of P, 0.020% or less of S, 0.08% or less of Al, 0.008% or less of N, 0.080% or less of Nb, and a remainder consisting of Fe and unavoidable impurities, wherein a compressive residual stress at an outer surface measured by an X-ray method is 250 MPa or more, and a compressive residual stress at a position at a depth of 1 mm from the outer surface measured by the X-ray method is 70% or more of the compressive residual stress at the outer surface measured by the X-ray method.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: January 1, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yosuke Kiyota, Takaaki Fukushi, Hideyuki Nakamura
  • Patent number: 10155214
    Abstract: A getter is provided. The getter consists essentially of from about 0% to 50% of titanium, from about 0% to 50% zirconium, and from about 5% to 50% of tantalum. A MEMS device is provided. The MEMS device includes a substrate and a getter over the substrate. The getter consists essentially of from about 0% to 50% of titanium, from about 0% to 50% zirconium, and from about 5% to 50% of tantalum. A method of forming a MEMS device is provided. The method includes the following operations: providing a substrate; and providing a getter over the substrate, wherein the getter consists essentially of from about 0% to 50% of titanium, from about 0% to 50% zirconium, and from about 5% to 50% of tantalum, and wherein all of the percentages are atomic percentages.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chin-Wei Liang, Cheng-Yuan Tsai, Chun-Wen Cheng, Chia-Shiung Tsai
  • Patent number: 10151010
    Abstract: A soft nitrided induction hardened steel part which is excellent in bearing fatigue strength comprised of a predetermined chemical composition wherein a dissolved N concentration from the surface to 0.2 mm depth is 0.05 to 1.50%, a Vicker's hardness from the surface to 0.2 mm depth after tempering at 300° C. is HV 600 or more, and t/r?0.35 when an effective hardened layer depth “t” is 0.5 mm or more and a radius of a breakage risk site or half of the thickness is “r” (mm).
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: December 11, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tatsuya Koyama, Suguru Yoshida
  • Patent number: 10144982
    Abstract: Provided is a Fe—Mn—C-based twinning-induced plasticity (TWIP) steel which includes 13 wt % to 24 wt % of manganese (Mn), 0.4 wt % to 1.2 wt % of carbon (C), and iron (Fe) as well as other unavoidable impurities as a remainder, is manufactured by caliber rolling, has a microstructure including elongated grains that are elongated in a rolling direction, and has an average grain size of the elongated grains in a direction perpendicular to the rolling direction of 1 ?m or less.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: December 4, 2018
    Assignee: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Tae Kyung Lee, Chong Soo Lee, Seok Weon Song, Jae Hyung Kim, Kaneaki Tsuzaki, Motomichi Koyama
  • Patent number: 10131977
    Abstract: One aspect of this ferritic stainless steel sheet contains, by mass %, C: 0.03% or less, N: 0.05% or less, Si: 1% or less, Mn: 1.2% or less, Cr: 14% or more and 28% or less, Nb: 8(C +N) or more and 0.8% or less, and Al: 0.1% or less, with a balance being Fe and inevitable impurities, in which a film satisfying Expression 1 is formed in a surface thereof. Expression 1 is df×Crf+5(Sif+3Alf)?2.0. In Expression 1, df represents a thickness (nm) of the film, Crf represents a Cr cationic fraction in the film, Sif represents a Si cationic fraction in the film, and Alf represents an Al cationic fraction in the film.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 20, 2018
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Nobuhiko Hiraide, Tooru Matsuhashi, Noriyo Morihiro, Naoto Ono
  • Patent number: 10130980
    Abstract: A cooling method for a rolling ingot of aluminum alloy after metallurgical homogenization heat treatment of said ingot and before hot rolling, characterized in that cooling by 30 to 150° C. is performed at a rate of 150 to 500° C./h, with a thermal differential of less than 40° C. throughout the treated portion of the ingot is disclosed. A facility allowing use of said method and said implementation is also disclosed.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: November 20, 2018
    Assignee: CONSTELLIUM NEUF-BRISACH
    Inventors: Vincent Duhoux, Bruno Magnin, Daniel Bellot, Jose Roche, Pierre Aucouturier
  • Patent number: 10112254
    Abstract: A method of producing a nickel alloy clad steel pipe including: providing a hollow cylinder of nickel alloy cladding material and a hollow cylinder of steel, placing the hollow cylinder of the nickel alloy cladding material concentrically inside the hollow cylinder of steel or the hollow cylinder of the steel concentrically inside the hollow cylinder of nickel alloy cladding material to form a composite billet, heating the composite billet to 1121-1260° C., and extruding the composite billet, wherein the nickel alloy cladding material comprises 6.0-12.0 wt. % molybdenum, 19.0-27.0 wt. % chromium, 1.0 wt. % maximum tungsten, 0.6 wt. % maximum aluminum, 0.6 wt. % maximum titanium, 0.001-0.05 wt. % carbon, 0.001-0.035 wt. % nitrogen, 0.001-0.3 wt. % silicon, 1.0 wt. % maximum niobium, 2.5 wt. % maximum iron, 0.5 wt. % maximum manganese, 0.015 wt. % maximum phosphorous, 0.015 wt. % maximum sulfur, 1.0 wt. % maximum cobalt, and the balance nickel and may have a solidus temperature greater than 1312° C.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: October 30, 2018
    Assignee: Huntington Alloys Corporation
    Inventors: Bhaven Chakravarti, Brian A. Baker, Debajyoti Maitra
  • Patent number: 10113220
    Abstract: A high strength hot dipped galvanized steel sheet is provided. By controlling the amount of addition of Ti instead of the addition of Nb or B, it is possible to obtain an effect of retarding recrystallization and grain growth even if annealing by a continuous annealing process in a temperature range of the general annealing temperature of 720° C. to a temperature of the lower of 800° C. or Ac3 temperature. By controlling the rolling and heat treatment conditions, it is possible to control the ferrite phase rate, grain size of the low temperature transformed phases, ratio of average values of the nano hardnesses of the ferrite phase and low temperature transformed phases, and fluctuations of hardnesses of the low temperature transformed phases in a composite structure steel of ferrite and low temperature transformed phases and obtain a high strength hot dipped galvanized steel sheet.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: October 30, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kengo Takeda, Kazuhisa Kusumi, Haruhiko Eguchi, Jun Hirowatari, Shintarou Fujii
  • Patent number: 10102951
    Abstract: A non-oriented electrical steel sheet having a high magnetic flux density and a low anisotropy contains C: not more than 0.01 mass %, Si: 1-4 mass %, Mn: 0.05-3 mass %, P: 0.03-0.2 mass %, S: not more than 0.01 mass %, Al: not more than 0.004 mass %, N: not more than 0.005 mass %, As: not more than 0.003 mass %, and preferably further contains one or two of Sb: 0.001-0.1 mass % and Sn: 0.001-0.1 mass % or further contains one or two of Ca: 0.001-0.005 mass % and Mg: 0.001-0.005 mass %.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: October 16, 2018
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshihiko Oda, Hiroaki Toda, Shinji Koseki, Tatsuhiko Hiratani, Tadashi Nakanishi, Tomoyuki Okubo
  • Patent number: 10100390
    Abstract: A heat-resistant member comprising a molybdenum alloy that comprises a first phase containing Mo as a main component and a second phase comprising a Mo—Si—B-based intermetallic compound particle phase, wherein the balance is an inevitable impurity and wherein the Si content is 0.05 mass % or more and 0.80 mass % or less and the B content is 0.04 mass % or more and 0.60 mass % or less. The member may be coated.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 16, 2018
    Assignee: A.L.M.T. Corp.
    Inventors: Takanori Kadokura, Hidenobu Nishino, Ayuri Tsuji, Shigekazu Yamazaki, Akihiko Ikegaya
  • Patent number: 10094008
    Abstract: A seamless steel pipe has a yield strength of 400 MPa or less and excellent HIC resistance. The seamless steel pipe includes: a chemical composition consisting, in mass %, of, C: 0.01 to 0.20%, Si: 0.05 to 0.50%, Mn: 0.3 to 2.0%, P: 0.02% or less, S: 0.01% or less, Cr: 0.02 to 0.2%, sol.Al: 0.001 to 0.100%, O: 0.0050% or less, N: 0.0100% or less, Ca: 0 to 0.0050%, Ti: 0 to 0.012%, and Nb: 0 to 0.012%, the balance being Fe and impurities; and a structure consisting, in area ratio, of 10 to 50% of ferrite and 0 to less than 5% of pearlite, the balance being tempered bainite and/or tempered martensite, and the number of inclusions each having a grain diameter of 50 mm or more is not more than 15 per 100 mm2, and the seamless steel pipe has a yield strength of 400 MPa or less.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: October 9, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Keiichi Kondo, Yuji Arai, Kenji Kobayashi
  • Patent number: 10087500
    Abstract: There is provided a method for manufacturing a high-strength galvannealed steel sheet having excellent coating adhesiveness and corrosion resistance whose base material is a high-strength steel sheet containing Si and Mn. The method includes performing an oxidation treatment on a steel sheet including Si and Mn in a first zone having an atmosphere of an oxygen concentration in the range of more than 0 vol % and less than 1 vol %, thereafter performing an oxidation treatment in a second zone having an atmosphere of an oxygen concentration in the range of 1 vol % or more, thereafter performing reduction annealing and galvanizing, and further performing an alloying treatment by heating the galvanized steel sheet.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: October 2, 2018
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoichi Makimizu, Yoshitsugu Suzuki, Yasunobu Nagataki
  • Patent number: 10047415
    Abstract: The present invention is a metallic wire rod comprising iridium or an iridium-containing alloy and, the wire rod has in the cross section thereof biaxial crystal orientation of 50% or more of abundance proportion of textures in which crystallographic orientation has preferred orientation to <100> direction. In the present invention, crystal orientation in the outer periphery from semicircle of the cross section which is the periphery of the wire rod is important, and in this zone, abundance proportion of textures in which crystallographic orientation has preferred orientation to <100> direction is preferably not less than 50%.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: August 14, 2018
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Koichi Sakairi, Kunihiro Tanaka, Muneki Nakamura, Fumie Seki
  • Patent number: 10047429
    Abstract: Provided is a gas nitrocarburizing method forming a nitride layer in a surface layer portion of a workpiece made of steel by heating the workpiece within a heat treatment furnace into which a heat treatment gas is introduced, the heat treatment gas containing ammonia gas and at least one of carbon dioxide gas and hydrogen gas, and having a remainder formed of an impurity.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: August 14, 2018
    Assignee: NTN CORPORATION
    Inventor: Chikara Ohki