Patents Examined by Jorge L Salazar, Jr.
  • Patent number: 11973487
    Abstract: An acoustic wave device includes an IDT electrode on a piezoelectric body and the IDT electrode includes first and second busbars, and first and second electrode fingers. A first dielectric film extends from a region between tip end portions of the first electrode fingers and the piezoelectric body to a region between the second busbar and the piezoelectric body with a first gap in between. The second electrode fingers are in direct contact with the piezoelectric body at a center of an overlap width, and a permittivity of the first dielectric film is lower than a permittivity of the piezoelectric body.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: April 30, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Katsuya Daimon
  • Patent number: 11967943
    Abstract: An acoustic resonator is fabricated by forming a patterned first photoresist mask on a piezoelectric plate at locations of a desired interdigital transducer (IDT) pattern. An etch-stop layer is then deposited on the plate and first photoresist mask. The first photoresist mask is removed to remove parts of the etch-stop and expose the plate. An IDT conductor material is deposited on the etch stop and the exposed plate. A patterned second photoresist mask is then formed on the conductor material at locations of the IDT pattern. The conductor material is then etched over and to the etch-stop to form the IDT pattern which has interleaved fingers on a diaphragm to span a substrate cavity. A portion of the plate and the etch-stop form the diaphragm. The etch-stop and photoresist mask are impervious to this etch. The second photoresist mask is removed to leave the IDT pattern.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: April 23, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Patrick Turner, Ryo Wakabayashi
  • Patent number: 11962282
    Abstract: An acoustic wave device including a support substrate, a piezoelectric layer provided over the support substrate, at least one pair of comb-shaped electrodes disposed on the piezoelectric layer, each of the at least one pair of comb-shaped electrodes including electrode fingers, a temperature compensation film interposed between the support substrate and the piezoelectric layer, the temperature compensation film having a temperature coefficient of elastic constant opposite in sign to a temperature coefficient of elastic constant of the piezoelectric layer; and an insulating layer interposed between the support substrate and the temperature compensation film, a first surface of the insulating layer having first protruding portions and/or first recessed portions, a second surface of the insulating layer having second protruding portions and/or second recessed portions, the first surface being closer to the support substrate, the second surface being closer to the temperature compensation film.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: April 16, 2024
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Shinji Yamamoto, Toshio Nishizawa, Naoki Kakita
  • Patent number: 11962283
    Abstract: Piston mode Lamb wave resonators are disclosed. A piston mode Lamb wave resonator can include a piezoelectric layer, such as an aluminum nitride layer, and an interdigital transducer on the piezoelectric layer. The piston mode Lamb wave resonator has an active region and a border region, in which the border region has a velocity with a lower magnitude than a velocity of the active region. The border region can suppress a transverse mode.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: April 16, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Jie Zou, Jiansong Liu, Gong Bin Tang, Chih-Ming Lin, Chun Sing Lam
  • Patent number: 11962288
    Abstract: A surface elastic wave filter has resonant cavities and comprises a composite substrate formed of a base substrate and a piezoelectric upper layer; at least one input electroacoustic transducer and an output electroacoustic transducer, arranged on the upper layer, and at least one internal reflecting structure, arranged between the input electroacoustic transducer and the output electroacoustic transducer. The internal reflecting structure comprises a first structure comprising at least one reflection grating having a first period and a second structure comprising at least one reflection grating having a second period, the first period being greater than the second period.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: April 16, 2024
    Assignee: Soitec
    Inventors: Eric Michoulier, Sylvain Ballandras, Thierry LaRoche
  • Patent number: 11955952
    Abstract: Filter devices. A first chip includes a first base, a first piezoelectric membrane having a first thickness, and a first acoustic Bragg reflector sandwiched between the first piezoelectric membrane and the first base. A first interdigital transducer (IDT) of a first solidly-mounted membrane resonator is formed on a surface of the first piezoelectric membrane. A second chip includes a second base, a second piezoelectric membrane having a second thickness less than the first thickness, and a second acoustic Bragg reflector sandwiched between the second piezoelectric membrane and the second base. A second IDT of a second solidly-mounted membrane resonator is formed on a surface of the second piezoelectric membrane. A circuit card is coupled to the first chip and the second chip, the circuit card including at least one conductor for making an electrical connection between the first IDT and the second IDT.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: April 9, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Sean McHugh, Gregory L. Hey-Shipton, Garrett Williams
  • Patent number: 11949398
    Abstract: A semiconductor device is provided. The semiconductor device incudes: a first sub-semiconductor structure including a dielectric layer; and a second sub-semiconductor structure, at least including a carrier substrate, and being bonded to the first sub-semiconductor structure. The first sub-semiconductor structure or the second sub-semiconductor structure includes a charge accumulation preventing layer, and the charge accumulation preventing layer is disposed between the carrier substrate and the dielectric layer, and is configured to avoid an undesired conductive channel from being generated due to charge accumulation on a surface of the carrier substrate.
    Type: Grant
    Filed: November 22, 2022
    Date of Patent: April 2, 2024
    Assignee: Shenzhen Newsonic Technologies Co., Ltd.
    Inventors: Guojun Weng, Jian Wang
  • Patent number: 11949404
    Abstract: Multi-mode surface acoustic wave filters are disclosed. A multi-mode surface acoustic wave filter can include a plurality of interdigital transducer electrodes that are longitudinally coupled to each other and stepped acoustic reflectors on opposing sides of the plurality of interdigital transducer electrodes. The acoustic reflectors include acoustic reflector fingers with stepped lengths.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: April 2, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventor: Rei Goto
  • Patent number: 11949405
    Abstract: A double mode SAW (DMS) filter includes: a plurality of interdigital transducers (IDTs), each having a plurality of Type 1 electrode fingers and a plurality of Type 2 electrode fingers formed on a piezoelectric substrate, wherein one Type 2 electrode finger among the plurality of Type 2 electrode fingers is disposed between two adjacent Type 1 electrode fingers among the plurality of Type 1 electrode fingers, and in a first IDT and a second IDT included in the plurality of IDTs to be adjacent to each other, one Type 1 electrode finger of the second IDT is disposed between two Type 1 electrode fingers of the first IDT. Accordingly, it is possible to provide a DMS filter capable of improving the amount of attenuation in an attenuation band adjacent to the wide band side for the passband and miniaturizing a product by saving space.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 2, 2024
    Assignee: WISOL CO., LTD.
    Inventors: Kensei Uehara, Takahiro Sato
  • Patent number: 11942921
    Abstract: In an acoustic wave device, an IDT electrode is located on a piezoelectric layer. A high-acoustic-velocity member is positioned on an opposite side of the piezoelectric layer from the IDT electrode. An acoustic velocity of a bulk wave propagating through the high-acoustic-velocity member is higher than an acoustic velocity of an acoustic wave propagating through the piezoelectric layer. A low-acoustic-velocity film is provided between the high-acoustic-velocity member and the piezoelectric layer. An acoustic velocity of a bulk wave propagating through the low-acoustic-velocity film is lower than the acoustic velocity of the bulk wave propagating through the piezoelectric layer. A dielectric film is located on the piezoelectric layer so as to cover the IDT electrode. In the acoustic wave device, a Young's modulus of the dielectric film is larger than a Young's modulus of the low-acoustic-velocity film.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: March 26, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yasumasa Taniguchi, Katsuya Daimon
  • Patent number: 11936358
    Abstract: An acoustic resonator device with low thermal impedance has a substrate and a single-crystal piezoelectric plate having a back surface attached to a top surface of the substrate via a bonding oxide (BOX) layer. An interdigital transducer (IDT) formed on the front surface of the plate has interleaved fingers disposed on the diaphragm. The piezoelectric plate and the BOX layer are removed from a least a portion of the surface area of the device to provide lower thermal resistance between the conductor pattern and the substrate.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: March 19, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Greg Dyer, Chris O'Brien, Neal O. Fenzi, James R. Costa
  • Patent number: 11936364
    Abstract: A surface acoustic wave device comprising a base substrate, a piezoelectric layer and an electrode layer in between the piezoelectric layer and the base substrate, a comb electrode formed on the piezoelectric layer comprising a plurality of electrode means with a pitch p, defined asp=A, with A being the wavelength of the standing acoustic wave generated by applying opposite potentials to the electrode layer and comb electrode, wherein the piezoelectric layer comprises at least one region located in between the electrode means, in which at least one physical parameter is different compared to the region underneath the electrode means or fingers. A method of fabrication for such surface acoustic wave device is also disclosed. The physical parameter may be thickness, elasticity, doping concentration of Ti or number of protons obtained by proton exchange.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: March 19, 2024
    Assignee: Soitec
    Inventors: Sylvain Ballandras, Thierry LaRoche
  • Patent number: 11929735
    Abstract: Acoustic resonator devices, filter devices, and methods of fabrication are disclosed. An acoustic resonator includes a substrate having a surface and a single-crystal piezoelectric plate having front and back surfaces. The back surface is attached to the surface of the substrate except for a portion of the piezoelectric plate forming a diaphragm that spans a cavity in the substrate. An interdigital transducer (IDT) is formed on the front surface of the single-crystal piezoelectric plate such that interleaved fingers of the IDT are disposed on the diaphragm. The IDT is configured to excite a primary acoustic mode in the diaphragm in response to a radio frequency signal applied to the IDT. At least a portion of an edge of the diaphragm is at an oblique angle to the fingers.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: March 12, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Ventsislav Yantchev, Patrick Turner, Viktor Plesski, Julius Koskela, Robert B. Hammond
  • Patent number: 11929724
    Abstract: A method for fabricating a surface acoustic wave (SAW) device includes forming an interdigital transducer (IDT) having lead-out portions and arrays of interdigital electrodes on a substrate, wherein the interdigital electrodes include central portions, end portions, and intermediate portions between the end portions and the lead-out portions; forming a protective layer on the IDT; forming a first temperature compensation layer on the protective layer; forming openings in the first temperature compensation layer to expose portions of the protective layer on the central portions and the intermediate portions of the interdigital electrodes; and etching the exposed portions of the protective layer, and etching the central portions and the intermediate portions of the interdigital electrodes to a preset thickness, to form protruding structures at the end portions of the interdigital electrodes.
    Type: Grant
    Filed: May 30, 2023
    Date of Patent: March 12, 2024
    Assignee: Shenzhen Newsonic Technologies Co., Ltd.
    Inventor: Jian Wang
  • Patent number: 11929734
    Abstract: Certain aspects of the present disclosure provide a surface acoustic wave (SAW) resonator with piston mode design and electrostatic discharge (ESD) protections. An example electroacoustic device generally includes a piezoelectric material and a first electrode structure disposed above the piezoelectric material. The first electrode structure comprises first electrode fingers arranged within an active region having a first region and a second region. At least one of the first electrode fingers has at least one of a different width or a different height in the first region than in the second region, and the first electrode fingers comprise a first electrode finger that has a width or height in the second region that is less than a corresponding width or height of the at least one of the first electrode fingers in the second region.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: March 12, 2024
    Assignee: RF360 Singapore Pte. Ltd.
    Inventors: Volker Schulz, Philipp Michael Jaeger
  • Patent number: 11923817
    Abstract: Methods of making packaged surface acoustic wave devices are provided. The method may include forming a photosensitive resin coat over a cavity-defining structure encapsulating a surface acoustic wave device. The photosensitive resin coat may be formed using a spin-coating process, and then patterned to form a desired shape. Portions of the photosensitive resin may be removed from areas near the edge of the die, to facilitate separation of a wafer into individual dies. The method may also include forming a conductive structure using a plating process, where the conductive structure is located between the resin coat and the cavity defining structure. The photosensitive resin can include a phenol resin. The packaged surface acoustic wave devices made using a photosensitive resin coat may be relatively thin, and may have a height of less than 220 micrometers.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 5, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Li Ann Koo, Takashi Inoue, Vivian Sing Zhi Lee, Ping Yi Tan
  • Patent number: 11923830
    Abstract: A tunable filter with wide tuning range and high out-of-band rejection is achieved with a tunable bandpass filter and a number of cascaded, fixed frequency Lame-Mode Resonators (LMRs) notch filters or other resonators. In some embodiments, the filter can be implemented with all of the elements on an integrated circuit, saving space for use in applications such as mobile phones or other mobile communication devices.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: March 5, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xiaoguang Liu, Yuehui Ouyang, Xudong He
  • Patent number: 11923824
    Abstract: Embodiments of this disclosure relate to reducing coupling between acoustic wave resonators. An isolation region of a substrate can be located between acoustic wave resonators. The isolation region can reduce capacitive coupling through the substrate between the acoustic wave resonators. In certain embodiments, the isolation region can be located between acoustic wave resonators of different filters to thereby increase isolation between the filters.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: March 5, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventor: Joshua James Caron
  • Patent number: 11916531
    Abstract: An acoustic wave device includes a support substrate, a piezoelectric layer provided over the support substrate, comb-shaped electrodes disposed on the piezoelectric layer, each of the comb-shaped electrodes including electrode fingers exciting an acoustic wave, a temperature compensation film interposed between the support substrate and the piezoelectric layer and having a temperature coefficient of an elastic constant opposite in sign to that of the piezoelectric layer, a boundary layer interposed between the support substrate and the temperature compensation film, an acoustic velocity of a bulk wave propagating through the boundary layer being higher than an acoustic velocity of a bulk wave propagating through the temperature compensation film and being lower than an acoustic velocity of a bulk wave propagating through the support substrate, and an intermediate layer interposed between the support substrate and the boundary layer and having a Q factor less than a Q factor of the boundary layer.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: February 27, 2024
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Toshiharu Nakazato, Shinji Yamamoto, Ryouta Iwabuchi, Naoki Takahashi
  • Patent number: 11916539
    Abstract: Band N77 bandpass filters include a first plurality of transversely-excited film bulk acoustic resonators (XBARs) on a first chip comprising a first rotated YX-cut lithium niobate piezoelectric plate having a thickness less than or equal to 535 nm, and a second plurality of XBARs on a second chip comprising a second rotated YX-cut lithium niobate piezoelectric plate having a thickness greater than or equal to 556 nm. A circuit card is coupled to the first chip and the second chip. The circuit card includes conductors for making electrical connections between the first chip and the second chip.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: February 27, 2024
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Doug Jachowski, Ventsislav Yantchev, Bryant Garcia, Patrick Turner