Patents Examined by José R. Diaz
  • Patent number: 10741635
    Abstract: To reduce a possibility of short circuiting between a wiring line that connects to a terminal unit and a pixel electrode, a display device is provided that includes a first lead wiring line that extends from a display area to a frame area while intersecting with an end portion of a flattening film, a second lead wiring line that is in a layer more on an upper side than the first lead wiring line and extends to a terminal unit while coming into contact with and intersecting with a first bank formed in a periphery of a second electrode, and a first wiring line contact part through which the first lead wiring line and the second lead wiring line connect to each other, the first wiring line contact part being provided between an end portion of the flattening film and the first bank.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 11, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tohru Okabe, Shinsuke Saida, Ryosuke Gunji, Hiroki Taniyama, Shinji Ichikawa, Yoshihiro Nakada, Hiroharu Jinmura, Akira Inoue
  • Patent number: 10741580
    Abstract: A semiconductor memory device comprises: a substrate; a first conductive layer and a second conductive layer arranged in a first direction crossing a surface of the substrate and extending in a second direction crossing the first direction, the first conductive layer being closer to the substrate than the second conductive layer, a length in the second direction of the first conductive layer being greater than the length of the second conductive layer; a first semiconductor film extending in the first direction and facing the first and second conductive layers; a second semiconductor film interposed between ends of the first and second conductive layers, extending in the first direction, and facing the first conductive layer; a first wiring farther from the substrate than the first semiconductor film and being electrically connected to the first semiconductor film; and a second wiring farther from the substrate than the second semiconductor film and being electrically connected to the second semiconductor fil
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: August 11, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Hideto Takekida
  • Patent number: 10734372
    Abstract: A semiconductor structure includes a vertical transport static random-access memory (SRAM) cell having a first active region and a second active region. The first active region and the second active region are linearly arranged in first and second rows, respectively. The first row of the first active region includes a first pull-up transistor, a first pull-down transistor and a first pass gate transistor, and the second row of the second active region includes a second pull-up transistor, a second pull-down transistor and a second pass gate transistor. A first gate region of the first active region extends orthogonal from the first row to the second active region, and a second gate region of the second active region extends orthogonal from the second row to the first active region.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Stuart A. Sieg, Junli Wang
  • Patent number: 10723617
    Abstract: A low-profile packaging structure for a microelectromechanical-system (MEMS) resonator system includes an electrical lead having internal and external electrical contact surfaces at respective first and second heights within a cross-sectional profile of the packaging structure and a die-mounting surface at an intermediate height between the first and second heights. A resonator-control chip is mounted to the die-mounting surface of the electrical lead such that at least a portion of the resonator-control chip is disposed between the first and second heights and wire-bonded to the internal electrical contact surface of the electrical lead.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: July 28, 2020
    Assignee: SiTime Corporation
    Inventors: Pavan Gupta, Aaron Partridge, Markus Lutz
  • Patent number: 10714498
    Abstract: According to one embodiment, a semiconductor memory device includes: a first interconnect layer; a second interconnect layer adjacent to the first interconnect layer; a semiconductor layer between the first and second interconnect layers; a first charge storage layer between the first interconnect layer and the semiconductor layer; and a second charge storage layer between the second interconnect layer and the semiconductor layer. A first distance between the first and second interconnect layers is shorter than a second distance between the first and second charge storage layers.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: July 14, 2020
    Assignee: Toshiba Memory Corporation
    Inventors: Harumi Seki, Yuichiro Mitani, Takamitsu Ishihara
  • Patent number: 10700057
    Abstract: The disclosed embodiments include an ESD robust transistor with a compound-SCR protection. The transistor may include a semiconductor substrate having a first conductivity type, a drain region coupled with the semiconductor substrate having a drain SCR component with a first drain region of the first conductivity type and a second drain region of the second conductivity type. The transistor may also include a source coupled with the semiconductor substrate, a channel region of the second conductivity type, and a gate coupled with the channel region having SCR components with a first gate region of the first conductivity type and a second gate region of the second conductivity type. The drain SCR components and the gate SCR components may create a low resistance discharge path along the channel region that activates in response to the ESD such that the ESD discharges through the transistor without causing damage to the transistor.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: June 30, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Arash Elhami Khorasani, Mark Griswold
  • Patent number: 10672901
    Abstract: A device includes a transistor formed on a substrate. The transistor includes an n-type drain contact layer, an n-type drain layer, an oxide layer, a p-type body region, a p-type terminal region, body trenches, and terminal trenches. The n-type drain contact layer is near a bottom surface of the substrate. The n-type drain layer is positioned on the n-type drain contact layer. The oxide layer circumscribes a transistor region. The p-type body region is positioned within the transistor region. The p-type terminal region extends from under the oxide layer to an edge of the transistor region, thereby forming a contiguous junction with the p-type body region. The body trenches is within the transistor region and interleaves with the p-type body region, whereas the terminal trenches is outside the transistor region and interleaves with the p-type terminal region.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 2, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Hideaki Kawahara, Christopher Boguslaw Kocon, Seetharaman Sridhar, Satoshi Suzuki, Simon John Molloy
  • Patent number: 10672752
    Abstract: A semiconductor package and a manufacturing method for the semiconductor package are provided. The semiconductor package has a redistribution layer, at least one die over the redistribution layer, through interlayer vias on the redistribution layer and aside the die and a molding compound encapsulating the die and the through interlayer vias disposed on the redistribution layer. The semiconductor package has connectors connected to the through interlayer vias and a protection film covering the molding compound and the die. The protection film is formed by a printing process.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 2, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Li-Hui Cheng, Jing-Cheng Lin, Po-Hao Tsai
  • Patent number: 10672870
    Abstract: In a method of manufacturing a semiconductor device, a fin structure is formed over a substrate. The fin structure has a channel region and a source/drain region. A gate structure is formed over the channel region of the fin structure. A first source/drain etching is performed to recess the source/drain region of the fin structure. After the first source/drain etching, a second source/drain etching is performed to further recess the source/drain region of the fin structure. After the second source/drain etching, a third source/drain etching is performed to further recess the source/drain region of the fin structure, thereby forming a source/drain recess. One or more epitaxial layers are formed in the source/drain recess. The first source/drain etching is isotropic etching and the second source/drain etching is anisotropic etching.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: June 2, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Lung Chen, Kang-Min Kuo, Long-Jie Hong
  • Patent number: 10672941
    Abstract: A method (200) for fabricating thin-film optoelectronic devices (100), the method comprising: providing a substrate (110), forming a back-contact layer (120); forming at least one absorber layer (130) made of an ABC chalcogenide material, adding at least one alkali metal (235), and forming at least one cavity (236, 610, 612, 613) at the surface of the absorber layer wherein forming of said at least one cavity is by dissolving away from said surface of the absorber layer at least one crystal aggregate comprising at least one alkali crystal comprising at least one alkali metal. The method (200) is advantageous for more environmentally-friendly production of photovoltaic devices (100) on flexible substrates with high photovoltaic conversion efficiency and faster production rate.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: June 2, 2020
    Assignees: FLISOM AG, EMPA
    Inventors: Patrick Reinhard, Fabian Pianezzi, Benjamin Bissig, Stephan Buecheler, Ayodhya Nath Tiwari
  • Patent number: 10672719
    Abstract: A semiconductor package includes a wiring portion including an insulating layer, conductive patterns disposed on the insulating layer, and conductive vias penetrating through the insulating layer and connected to the conductive patterns, a semiconductor chip disposed on the wiring portion, an encapsulant disposed on the wiring portion and encapsulating at least a portion of the semiconductor chip, and a metal layer disposed on the semiconductor chip and the encapsulant and having a thickness of 10 ?m to 70 ?m.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: June 2, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kang Heon Hur, Jong Man Kim, Kyung Ho Lee, Han Kim
  • Patent number: 10665604
    Abstract: An object is to provide a semiconductor device with large memory capacity. The semiconductor device includes first to seventh insulators, a first conductor, and a first semiconductor. The first conductor is positioned on a first top surface of the first insulator and a first bottom surface of the second insulator. The third insulator is positioned in a region including a side surface and a second top surface of the first insulator, a side surface of the first conductor, and a second bottom surface and a side surface of the second insulator. The fourth insulator, the fifth insulator, and the first semiconductor are sequentially stacked on the third insulator. The sixth insulator is in contact with the fifth insulator in a region overlapping the first conductor. The seventh insulator is positioned in a region including the first semiconductor and the sixth insulator.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 26, 2020
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hajime Kimura, Tatsunori Inoue
  • Patent number: 10656479
    Abstract: In an IPS-mode liquid crystal display device, the area of a terminal portion is decreased. A liquid crystal display device includes a TFT substrate and a counter substrate attached to the TFT substrate with a sealing material, and includes a display region and a terminal portion formed on the TFT substrate. A shielding transparent conductive film is formed on the outer side of the counter substrate. On the terminal portion, an earth pad formed with a transparent conductive film is formed on an organic passivation film. The shielding transparent conductive film is connected to the earth pad through a conductor. Below organic passivation film of the terminal portion, a wire is formed.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: May 19, 2020
    Assignee: Japan Display Inc.
    Inventors: Hiroyuki Abe, Kentaro Agata, Masaki Murase, Kazune Matsumura
  • Patent number: 10651109
    Abstract: A method of forming a semiconductor device includes providing a semiconductor package comprising an electrically insulating mold compound body, a semiconductor die that is encapsulated by the mold compound body, a plurality of electrically conductive leads that each protrude out of the mold compound body, and a metal heat slug, the metal heat slug comprising a rear surface that is exposed from the mold compound body, coating outer portions of the leads that are exposed from the mold compound body with a metal coating, and after completing the coating of the outer portions of the leads, providing a planar metallic heat sink interface surface on the semiconductor device which is exposed from the mold compound body, and substantially devoid of the metal coating.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: May 12, 2020
    Assignee: Infineon Technologies AG
    Inventors: Syahir Abd Hamid, Jagen Krishnan, Mian Mian Lam, Jayaganasan Narayanasamy, Fabian Schnoy, Thomas Stoek, Christian Stuempfl
  • Patent number: 10644203
    Abstract: A light emitting element includes a semiconductor structure including a first layer including a first and a second regions, and a second layer above the second region, the first region including extending portions each extending into the second region from an outer peripheral region; a first insulating layer including first through-holes respectively located on the extending portions, and a second through-hole located above the second region; a second insulating layer including a third and a fourth through-holes; a first external electrode connected with the first layer via the first through-holes; and a second external electrode connected with the second layer via the second through-hole. The extending portions are each located in an area, on a top surface of the first layer, other than an area overlapping any of corner portions of the first external electrode and other than an area overlapping any of corner portions of the second external electrode.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: May 5, 2020
    Assignee: NICHIA CORPORATION
    Inventors: Akihiro Nakamura, Keiji Emura
  • Patent number: 10644190
    Abstract: A fluidic assembly method is provided that uses a counterbore pocket structure. The method is based upon the use of a substrate with a plurality of counterbore pocket structures formed in the top surface, with each counterbore pocket structure having a through-hole to the substrate bottom surface. The method flows an ink with a plurality of objects over the substrate top surface. As noted above, the objects may be micro-objects in the shape of a disk. For example, the substrate may be a transparent substrate and the disks may be light emitting diode (LED) disks. Simultaneously, a suction pressure is created at the substrate bottom surface. In response to the suction pressure from the through-holes, the objects are drawn into the counterbore pocket structures. Also provided is a related fluidic substrate assembly.
    Type: Grant
    Filed: January 1, 2018
    Date of Patent: May 5, 2020
    Assignee: eLux Inc.
    Inventors: Changqing Zhan, Paul John Schuele, Mark Albert Crowder, Sean Mathew Garner, Timothy James Kiczenski
  • Patent number: 10643971
    Abstract: A method for fabricating a semiconductor chip module and a semiconductor chip package is disclosed. One embodiment provides a first layer, a second layer, and a base layer. The first layer is disposed on the base layer, and the second layer is disposed on the first layer. A plurality of semiconductor chips is applied above the second layer, and the second layer with the applied semiconductor chips is separated from the first layer.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: May 5, 2020
    Assignee: Intel Deutschland GMBH
    Inventors: Gottfried Beer, Irmgard Escher-Poeppel
  • Patent number: 10644017
    Abstract: On the upper surface of a fin projecting from the upper surface of a semiconductor substrate, there are formed a control gate electrode through a gate insulating film and a memory gate electrode through a gate insulating film. A semiconductor region is formed in the fin beside the control gate electrode. On the semiconductor region, an insulating film, a first interlayer insulating film, and a second interlayer insulating film are formed. A plug reaching the semiconductor region is formed in the second interlayer insulating film, the first interlayer insulating film, and the insulating film. A cap film is formed between the control gate electrode and the interlayer insulating film, and the plug is positioned also right above the cap film.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 5, 2020
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Tomohiro Yamashita
  • Patent number: 10636713
    Abstract: Sensor packages and manufacturing methods thereof are disclosed. One of the sensor packages includes a semiconductor chip and a redistribution layer structure. The semiconductor chip has a sensing surface. The redistribution layer structure is arranged to form an antenna transmitter structure aside the semiconductor chip and an antenna receiver structure over the sensing surface of the semiconductor chip.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: April 28, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yung-Ping Chiang, Chao-Wen Shih, Shou-Zen Chang, Albert Wan, Yu-Sheng Hsieh
  • Patent number: 10629535
    Abstract: An integrated circuit is provided that comprises a first ground plane associated with a first set of circuits that have a first operational temperature requirement, and a second ground plane associated with a second set of circuits that have a second operational temperature requirement that is higher than the first operational temperature requirement. The second ground plane is substantially thermally isolated from the first ground plane. A superconducting coupler electrically couples the first ground plane and the second ground plane while maintaining relative thermal isolation between the first ground plane and the second ground plane.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: April 21, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Patrick Alan Loney, Aaron Ashley Hathaway, Daniel Robert Queen, John X. Przybysz, Robert Miles Young