Patents Examined by Joseph C Nicely
  • Patent number: 11508904
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first liner on the MTJ; forming a second liner on the first liner; forming an inter-metal dielectric (IMD) layer on the MTJ, and forming a metal interconnection in the IMD layer, the second liner, and the first liner to electrically connect the MTJ. Preferably, the first liner and the second liner are made of different materials.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: November 22, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Yi-Wei Tseng, Chin-Yang Hsieh, Jing-Yin Jhang, Yi-Hui Lee, Ying-Cheng Liu, Yi-An Shih, I-Ming Tseng, Yu-Ping Wang
  • Patent number: 11502192
    Abstract: An integrated circuit includes a MOSFET device and a monolithic diode device, wherein the monolithic diode device is electrically connected in parallel with a body diode of the MOSFET device. The monolithic diode device is configured so that a forward voltage drop VfD2 of the monolithic diode device is less than a forward voltage drop VfD1 of the body diode of the MOSFET device. The forward voltage drop VfD2 is process tunable by controlling a gate oxide thickness, a channel length and body doping concentration level. The tunability of the forward voltage drop VfD2 advantageously permits design of the integrated circuit to suit a wide range of applications according to requirements of switching speed and efficiency.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 15, 2022
    Assignee: STMicroelectronics Pte Ltd
    Inventors: Shin Phay Lee, Voon Cheng Ngwan, Maurizio Gabriele Castorina
  • Patent number: 11502178
    Abstract: A transistor device includes a semiconductor layer, a surface dielectric layer on the semiconductor layer, and at least a portion of a gate on the surface dielectric layer. The surface dielectric layer includes an aperture therein that is laterally spaced apart from the gate. The transistor device includes an interlayer dielectric layer on the surface dielectric layer, and a field plate on the interlayer dielectric layer. The field plate is laterally spaced apart from the gate, and at least a portion of the field plate includes a recessed portion above the aperture in the surface dielectric layer.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: November 15, 2022
    Assignee: Wolfspeed, Inc.
    Inventors: Kyle Bothe, Jia Guo, Terry Alcorn, Fabian Radulescu, Scott Sheppard
  • Patent number: 11502182
    Abstract: A semiconductor device includes a substrate. A gate structure is disposed over the substrate in a vertical direction. The gate structure extends in a first horizontal direction. An air spacer is disposed adjacent to a first portion of the gate structure in a second horizontal direction that is different from the first horizontal direction. The air spacer has a vertical boundary in a cross-sectional side view defined by the vertical direction and the first horizontal direction.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: November 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Hsin Yang, Yen-Ming Chen, Feng-Cheng Yang, Tsung-Lin Lee, Wei-Yang Lee, Dian-Hau Chen
  • Patent number: 11495672
    Abstract: Integrated circuit structures including increased transistor source/drain (S/D) contact area using a sacrificial S/D layer are provided herein. The sacrificial layer, which includes different material from the S/D material, is deposited into the S/D trenches prior to the epitaxial growth of that S/D material, such that the sacrificial layer acts as a space-holder below the S/D material. During S/D contact processing, the sacrificial layer can be selectively etched relative to the S/D material to at least partially remove it, leaving space below the S/D material for the contact metal to fill. In some cases, the contact metal is also between portions of the S/D material. In some cases, the contact metal wraps around the epi S/D, such as when dielectric wall structures on either side of the S/D region are employed. By increasing the S/D contact area, the contact resistance is reduced, thereby improving the performance of the transistor device.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 8, 2022
    Assignee: Intel Corporation
    Inventors: Dax M. Crum, Biswajeet Guha, William Hsu, Stephen M. Cea, Tahir Ghani
  • Patent number: 11495512
    Abstract: Flexible transistors and electronic circuits incorporating the transistors are provided. The flexible transistors promote heat dissipation from the active regions of the transistors while preserving their mechanical flexibility and high-frequency performance. The transistor designs utilize thru-substrate vias (TSVs) beneath the active regions of thin-film type transistors on thin flexible substrates. To promote rapid heat dissipation, the TSVs are coated with a material having a high thermal conductivity that transfers heat from the active region of the transistor to a large-area ground.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: November 8, 2022
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Huilong Zhang, Shaoqin Gong
  • Patent number: 11495677
    Abstract: A semiconductor device includes a first active fin structure and a second active fin structure extending along a first lateral direction. The semiconductor device includes a dummy fin structure, also extending along the first lateral direction, that is disposed between the first active fin structure and the second fin structure. The dummy fin structure includes a material that is configured to induce mechanical deformation of a first source/drain structure coupled to an end of the first active fin structure and a second source/drain structure coupled to an end of the second active fin structure.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Ruei Jhan, Kuan-Ting Pan, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11488951
    Abstract: Provided is a semiconductor device, comprising: a semiconductor substrate; a transistor portion including an emitter region on the top of the semiconductor substrate; a diode portion including a cathode region on the bottom of the semiconductor substrate and a second conductivity type overlap region in a region other than the cathode region and arranged alongside to the transistor portion a preset arrangement direction on the top of the semiconductor substrate; and an interlayer dielectric film provided between the semiconductor substrate and an emitter electrode and including a contact hole for connecting the emitter electrode and the diode portion. The overlap region is provided to have a first length between the end of the emitter region and the end of the cathode region and a second length, which is shorter than the first length, between the end of the contact hole and the end of the cathode region.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: November 1, 2022
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yosuke Sakurai, Seiji Noguchi, Toru Ajiki
  • Patent number: 11488859
    Abstract: In an embodiment, a device includes: a semiconductor substrate; a first inter-layer dielectric (ILD) over the semiconductor substrate; a first conductive feature extending through the first ILD; a first etch stop layer over the first conductive feature and the first ILD, the first etch stop layer being a first dielectric material; a second ILD over the first etch stop layer; a contact having a first portion extending through the second ILD and a second portion extending through the first etch stop layer, the contact being physically and electrically coupled to the first conductive feature; and a first protective layer surrounding the second portion of the contact, the first portion of the contact being free from the first protective layer, the first protective layer being a second dielectric material, the second dielectric material being different from the first dielectric material.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: November 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Po-Nan Yeh, Yu Shih Wang, Ming-Hsi Yeh
  • Patent number: 11482446
    Abstract: The present disclosure discloses a semiconductor device manufacturing method and a semiconductor device, relating to the technical field of semiconductors. The method includes: providing a semiconductor substrate, the semiconductor substrate comprising a shallow trench and active areas; forming an oxygen-containing layer on exposed outer surfaces of the shallow trench and the active areas; filling a first isolation layer of a set height in the shallow trench comprising the oxygen-containing layer on its surface, the set height being lower than heights of the active areas; forming an etch stop layer on an upper surface of the first isolation layer; filling a second isolation layer on the etch stop layer in the shallow trench to form a shallow trench isolation (STI) structure; and etching the active areas and the STI structure to form wordline trenches, the bottoms of the wordline trenches in the STI structure are higher than the set height.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: October 25, 2022
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Kui Zhang, Zhan Ying
  • Patent number: 11482607
    Abstract: An object is to provide a semiconductor device that can prevent organic contamination of an electrode including a plurality of laminated metal layers. A semiconductor device includes: a semiconductor substrate; and an electrode including a plurality of layers laminated on a principal surface of the semiconductor substrate. The electrode includes: a first metal layer in contact with the principal surface of the semiconductor substrate, the first metal layer containing Al; an oxide layer formed on a surface of the first metal layer, the oxide layer containing a metal and oxygen; and a second metal layer formed on a surface of the oxide layer. Concentrations of the oxygen in the oxide layer are higher than or equal to 8.0×1021/cm3 and lower than or equal to 4.0×1022/cm3.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: October 25, 2022
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Atsufumi Inoue, Tatsuro Watahiki, Kengo Matsufuji, Kojiro Hara
  • Patent number: 11482543
    Abstract: Existing semiconductor transistor processes may be leveraged to form lateral extensions adjacent to a conventional gate structure. The dielectric thickness under these lateral gate extensions can be varied to tune device performance and enable higher cut-off frequencies without compromising resistance to breakdown at high operating voltages. These extensions may be patterned with dimensions that are not limited by lithographic resolution and overlay capabilities and are compatible with conventional processing for ease of integration with other devices. The lateral extensions and dielectric spacers may be used to form self-aligned source, drain, and channel regions. A narrow-highly-doped channel may be formed under a narrow gate extension to improve operating frequencies. A thick dielectric layer may be formed under a narrow extension gate to improve operation voltage range.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: October 25, 2022
    Assignee: metaMOS Solutions Inc.
    Inventor: Timothy Lee
  • Patent number: 11476164
    Abstract: Integrated circuit structures having differentiated workfunction layers are described. In an example, an integrated circuit structure includes a first gate electrode above a substrate. The first gate electrode includes a first workfunction material layer. A second gate electrode is above the substrate. The second gate electrode includes a second workfunction material layer different in composition from the first workfunction material layer. The second gate electrode does not include the first workfunction material layer, and the first gate electrode does not include the second workfunction material layer. A third gate electrode above is the substrate. The third gate electrode includes a third workfunction material layer different in composition from the first workfunction material layer and the second workfunction material layer. The third gate electrode does not include the first workfunction material layer and does not include the second workfunction material layer.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: October 18, 2022
    Assignee: Intel Corporation
    Inventors: Ying Pang, Florian Gstrein, Dan S. Lavric, Ashish Agrawal, Robert Niffenegger, Padmanava Sadhukhan, Robert W. Heussner, Joel M. Gregie
  • Patent number: 11469332
    Abstract: A semiconductor device includes a substrate, a plurality of nanowires, a gate structure, a source/drain epitaxy structure, and a semiconductor layer. The substrate has a protrusion portion. The nanowires extend in a first direction above the protrusion portion of the substrate, the nanowires being arranged in a second direction substantially perpendicular to the first direction. The gate structure wraps around each of the nanowires. The source/drain epitaxy structure is in contact with an end surface of each of the nanowires, in which a bottom surface of the source/drain epitaxy structure is lower than a top surface of the protrusion portion of the substrate. The semiconductor layer is in contact with the bottom surface of the epitaxy structure, in which the semiconductor layer is spaced from the protrusion portion of the substrate.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: October 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Ju Lee, Chun-Fu Cheng, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11469307
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device that includes a well region with a substrate. A source region and a drain region are arranged within the substrate on opposite sides of the well region. A gate electrode is arranged over the well region, has a bottom surface arranged below a topmost surface of the substrate, and extends between the source and drain regions. A trench isolation structure surrounds the source region, the drain region, and the gate electrode. A gate dielectric structure separates the gate electrode from the well region, the source, region, the drain region, and the trench isolation structure. The gate electrode structure has a central portion and a corner portion. The central portion has a first thickness, and the corner portion has a second thickness that is greater than the first thickness.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: October 11, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Kong-Beng Thei, Chien-Chih Chou, Alexander Kalnitsky, Szu-Hsien Liu, Huan-Chih Yuan
  • Patent number: 11469313
    Abstract: A self-aligned p+ contact MOSFET device is provided. A process to manufacture the device includes forming oxide plugs on top of gate trenches, conducting uniform silicon mesa etch back, and forming oxide spacers to form contact trenches.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: October 11, 2022
    Assignee: IPOWER SEMICONDUCTOR
    Inventors: Hamza Yilmaz, Jong Oh Kim
  • Patent number: 11462510
    Abstract: A stacked package structure for a chip, can include: a substrate having a first surface and a second surface opposite thereto; a first die having an active and back faces, where the active face of the first die includes pads; a first enclosure that covers the first die; an interlinkage that extends to the first enclosure to electrically couple with the pads; a first redistribution body electrically coupled to the interlinkage, and being partially exposed on a surface of the stacked package structure to provide outer pins for electrically coupling to external circuitry; a penetrating body that penetrates the first enclosure and substrate; a second die having an electrode electrically coupled to a first terminal of the penetrating body; and a second terminal of the penetrating body that is exposed on the surface of the stacked package structure to provide outer pins for electrically coupling to the external circuitry.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: October 4, 2022
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventor: Xiaochun Tan
  • Patent number: 11456292
    Abstract: A semiconductor device includes a substrate, a first gate structure, a second gate structure, a third gate structure, and a first source/drain region. The first, second, and third gate structures are above the substrate and arranged in a first direction. The first, second, and third gate structures extend in a second direction different from the first direction, and the second gate structure is between the first and third gate structures. The first source/drain region is between the first and third gate structures, and the first source/drain region is at one end of the second gate structure.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: September 27, 2022
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., TSMC NANJING COMPANY LIMITED, TSMC CHINA COMPANY LIMITED
    Inventors: Xin-Yong Wang, Yang Zhou, Liu Han
  • Patent number: 11456379
    Abstract: A split-gate trench device chip has an active region in which a plurality of active trenches are disposed. The active region is enclosed by termination trenches disposed in a termination region, which extends to the edges of the chip. A gate metal lead is disposed on the device surface. The gate metal lead makes contact to gate electrodes in the active trenches through contact holes disposed in the active region. A source or a drain metal lead is also disposed on the surface. The source or the drain metal lead makes contact to the field plate electrodes through contact holes disposed outside the active region. Each active trench in the active region has a first end merge into a first termination trench and a second end separated from an adjacent second termination trench.
    Type: Grant
    Filed: March 31, 2021
    Date of Patent: September 27, 2022
    Assignee: Diodes Incorporated
    Inventors: Chiao-Shun Chuang, Tsung-Wei Pai, Yun-Pu Ku
  • Patent number: 11456367
    Abstract: The present invention provides a trench gate structure and a method of forming the same. The method comprises steps of forming a first trench on the surface of a substrate, a surface of a bottom of the first trench comprising a crystal face belonging to the first family of crystal faces, and a surface of a sidewall of the first trench comprising another crystal face belonging to a second family of crystal faces. With a face-selective wet etching, a specific crystal face is presented on the surface of the bottom of the trench and a thicker gate oxide layer is formed thereon after performing thermal oxidation to avoid from failure due to thinner gate oxide layer on the surface of the bottom, increase breakdown voltage, and improve reliability of the device.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: September 27, 2022
    Assignee: SiEn (QingDao) Integrated Circuits Co., Ltd.
    Inventors: Min-Hwa Chi, Longkang Yang, Huaihua Xu, Huan Wang, Richard Ru-Gin Chang