Patents Examined by Joseph C Nicely
  • Patent number: 11830830
    Abstract: A microelectronic device includes a doped region of semiconductor material having a first region and an opposite second region. The microelectronic device is configured to provide a first operational potential at the first region and to provide a second operational potential at the second region. The microelectronic device includes field plate segments in trenches extending into the doped region. Each field plate segment is separated from the semiconductor material by a trench liner of dielectric material. The microelectronic device further includes circuitry electrically connected to each of the field plate segments. The circuitry is configured to apply bias potentials to the field plate segments. The bias potentials are monotonic with respect to distances of the field plate segments from the first region of the doped region.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: November 28, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Alexei Sadovnikov, Sheldon Douglas Haynie, Ujwal Radhakrishna
  • Patent number: 11824100
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a gate stack over an active region of a substrate. The gate stack includes a gate dielectric layer and a first work function layer over the gate dielectric layer. The first work function layer includes a plurality of first layers and a plurality of second layers arranged in an alternating manner over the gate dielectric layer. The plurality of first layers include a first material. The plurality of second layers include a second material different from the first material.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Yi Lee, Weng Chang, Chi On Chui
  • Patent number: 11824114
    Abstract: A transistor device includes a semiconductor substrate having a first major surface, a cell field and an edge termination region laterally surrounding the cell field. The cell field includes: elongate active trenches that extend from the first major surface into the semiconductor substrate, a field plate and a gate electrode being positioned in each elongate active trench, the gate electrode being arranged above and electrically insulated from the field plate; and elongate mesas, each elongate mesa being formed between neighbouring elongate active trenches, the elongate mesas comprising a drift region, a body region on the drift region and a source region on the body region.
    Type: Grant
    Filed: November 11, 2022
    Date of Patent: November 21, 2023
    Assignee: Infineon Technologies Austria AG
    Inventors: Stefan Tegen, Matthias Kroenke
  • Patent number: 11824092
    Abstract: In an insulated trench gate device, polysilicon in the trench is etched below the top surface of the trench, leaving a thin gate oxide layer exposed near the top of the trench. An angled implant is conducted that implants dopants through the exposed gate oxide and into the side of the trench. If the implanted dopants are n-type, this technique may be used to extend an n+ source region to be below the top of the polysilicon in the trench. If the implanted dopants are p?type, the dopants may be used to form a p-MOS device that turns on when the polysilicon is biased with a negative voltage. P-MOS and n-MOS devices can be formed in a single cell using this technique, where turning on the n-MOS device turns on a vertical power switch, and turning on the p-MOS device turns off the power switch.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: November 21, 2023
    Assignee: PAKAL TECHNOLOGIES, INC
    Inventors: Paul M. Moore, Vladimir Rodov, Richard A. Blanchard
  • Patent number: 11817343
    Abstract: Generally, examples are provided relating to filling gaps with a dielectric material, such as filling trenches between fins for Shallow Trench Isolations (STIs). In an embodiment, a first dielectric material is conformally deposited in a trench using an atomic layer deposition (ALD) process. After conformally depositing the first dielectric material, the first dielectric material is converted to a second dielectric material. In further examples, the first dielectric material can be conformally deposited in another trench, and a fill dielectric material can be flowed into the other trench and converted.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Yu-Yun Peng
  • Patent number: 11817388
    Abstract: The disclosure provides an electronic apparatus. The electronic apparatus includes a substrate, a first metal layer, an insulating layer, a first conductor, an electronic assembly and a transistor circuit die. The first metal layer is disposed on the substrate. The insulating layer is disposed on the substrate. The first conductor is formed in a first via of the insulating layer. The electronic assembly is disposed on the substrate and electrically connected to the first metal layer through the first conductor. The transistor circuit die is electrically connected to the first metal layer.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: November 14, 2023
    Assignee: Innolux Corporation
    Inventors: Tang Chin Hung, Chin-Lung Ting, Chung-Kuang Wei, Ker-Yih Kao, Tong-Jung Wang, Chih-Yung Hsieh, Hao Jung Huang, I-Yin Li, Chia-Chi Ho, Yi Hung Lin, Cheng-Hsu Chou, Chia-Ping Tseng
  • Patent number: 11818901
    Abstract: The disclosure relates to integrated circuits and methods including one or more rows of transistors. In an embodiment, an integrated circuit includes a row of bipolar transistors including a plurality of first conduction regions, a second conduction region, and a common base between the first conduction regions and the second conduction region. An insulating trench is in contact with each bipolar transistor of the row of bipolar transistors. A conductive layer is on the insulating trench and the common base between the first conduction regions. A spacer layer is between the conductive layer and the first conduction regions.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: November 14, 2023
    Assignees: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Philippe Boivin, Jean Jacques Fagot, Emmanuel Petitprez, Emeline Souchier, Olivier Weber
  • Patent number: 11810913
    Abstract: Provided is a semiconductor device, comprising: a semiconductor substrate; a transistor portion including an emitter region on the top of the semiconductor substrate; a diode portion including a cathode region on the bottom of the semiconductor substrate and a second conductivity type overlap region in a region other than the cathode region and arranged alongside to the transistor portion a preset arrangement direction on the top of the semiconductor substrate; and an interlayer dielectric film provided between the semiconductor substrate and an emitter electrode and including a contact hole for connecting the emitter electrode and the diode portion. The overlap region is provided to have a first length between the end of the emitter region and the end of the cathode region and a second length, which is shorter than the first length, between the end of the contact hole and the end of the cathode region.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: November 7, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Yosuke Sakurai, Seiji Noguchi, Toru Ajiki
  • Patent number: 11810823
    Abstract: Semiconductor arrangements and methods of manufacturing the same. The semiconductor arrangement may include: a substrate including a base substrate, a first semiconductor layer on the substrate, and a second semiconductor layer on the first semiconductor layer; first and second fin structures formed on the substrate and extending in the same straight line, each of the first and second fin structures including at least portions of the second semiconductor layer; a first isolation part formed around the first and second fin structures on opposite sides of the straight line; first and second FinFETs formed on the substrate based on the first and second fin structures respectively; and a second isolation part between the first and second fin structures and intersecting the first and second fin structures to isolate the first and second fin structures from each other.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 7, 2023
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Huilong Zhu
  • Patent number: 11810919
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having a first fin structure. The semiconductor device structure includes a first source/drain structure over the first fin structure. The semiconductor device structure includes a first dielectric layer over the first source/drain structure and the substrate. The semiconductor device structure includes a first conductive contact structure in the first dielectric layer and over the first source/drain structure. The semiconductor device structure includes a second dielectric layer over the first dielectric layer and the first conductive contact structure. The semiconductor device structure includes a first conductive via structure passing through the second dielectric layer and connected to the first conductive contact structure. The first conductive via structure has a first substantially strip shape in a top view of the first conductive via structure.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: November 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jyun-De Wu, Te-Chih Hsiung, Yi-Chun Chang, Yi-Chen Wang, Yuan-Tien Tu, Peng Wang, Huan-Just Lin
  • Patent number: 11799002
    Abstract: A method includes depositing a dummy semiconductor layer and a first semiconductor layer over a substrate, forming spacers on sidewalls of the dummy semiconductor layer, forming a first epitaxial material in the substrate, exposing the dummy semiconductor layer and the first epitaxial material, where exposing the dummy semiconductor layer and the first epitaxial material includes thinning a backside of the substrate, etching the dummy semiconductor layer to expose the first semiconductor layer, where the spacers remain over and in contact with end portions of the first semiconductor layer while etching the dummy semiconductor layer, etching portions of the first semiconductor layer using the spacers as a mask, and replacing a second epitaxial material and the first epitaxial material with a backside via, the backside via being electrically coupled to a source/drain region of a first transistor.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yen-Po Lin, Wei-Yang Lee, Yuan-Ching Peng, Chia-Pin Lin, Jiun-Ming Kuo
  • Patent number: 11799007
    Abstract: In some embodiments, the present disclosure relates to a semiconductor device that includes a well region with a substrate. A source region and a drain region are arranged within the substrate on opposite sides of the well region. A gate electrode is arranged over the well region, has a bottom surface arranged below a topmost surface of the substrate, and extends between the source and drain regions. A trench isolation structure surrounds the source region, the drain region, and the gate electrode. A gate dielectric structure separates the gate electrode from the well region, the source, region, the drain region, and the trench isolation structure. The gate electrode structure has a central portion and a corner portion. The central portion has a first thickness, and the corner portion has a second thickness that is greater than the first thickness.
    Type: Grant
    Filed: July 27, 2022
    Date of Patent: October 24, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Kong-Beng Thei, Chien-Chih Chou, Alexander Kalnitsky, Szu-Hsien Liu, Huan-Chih Yuan
  • Patent number: 11798940
    Abstract: A semiconductor device includes a first transistor disposed over a substrate, a second disposed over the first transistor, and a conductive trace. The first transistor includes a first active area extending on a first layer. The second transistor includes a second active area extending on a second layer above the first layer. The conductive trace extends on a third layer. The first to third layers are separated from each other in a first direction, and the third layer is interposed between the first and second layers. The first active area, the second active area, and the conductive trace overlap in a layout view.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Pin-Dai Sue, Tzung-Yo Hung, Jung-Hsuan Chen, Ting-Wei Chiang
  • Patent number: 11799000
    Abstract: A high electron mobility transistor (HEMT) and method for forming the same are disclosed. The high electron mobility transistor has a GaN epi-layer, a source ohmic contact, a drain ohmic contact, a gate structure, a first metal electrode contact and a first passivation layer. The source ohmic contact and the drain ohmic contact are disposed on the epi-layer. The gate structure is disposed on the epi-layer and between the source ohmic contact and the drain ohmic contact. The first metal electrode contact is disposed above the gate structure. The first passivation layer is sandwiched between the first metal electrode contact and the gate structure.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: October 24, 2023
    Assignee: HIPER SEMICONDUCTOR INC.
    Inventors: Yan Lai, Wei-Chen Yang
  • Patent number: 11798943
    Abstract: In an embodiment, a method includes: depositing a protective layer on a source/drain region and a gate mask, the gate mask disposed on a gate structure, the gate structure disposed on a channel region of a substrate, the channel region adjoining the source/drain region; etching an opening through the protective layer, the opening exposing the source/drain region; depositing a metal in the opening and on the protective layer; annealing the metal to form a metal-semiconductor alloy region on the source/drain region; and removing residue of the metal from the opening with a cleaning process, the protective layer covering the gate mask during the cleaning process.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: October 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yang-Cheng Wu, Yun-Hua Chen, Wen-Kuo Hsieh, Huan-Just Lin
  • Patent number: 11791336
    Abstract: Semiconductor devices and methods of forming the same are provided. In an embodiment, a semiconductor device includes a first fin extending along a first direction, a second fin extending parallel to the first fin, and a gate structure over and wrapping around the first fin and the second fin, the gate structure extending along a second direction perpendicular to the first direction. The first fin bents away from the second fin along the second direction and the second fin bents away from the first fin along the second direction.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jiun-Ming Kuo, Pei-Ling Gao, Chen-Hsuan Liao, Hung-Ju Chou, Chih-Chung Chang, Che-Yuan Hsu
  • Patent number: 11791261
    Abstract: A semiconductor structure and a method for forming the same are provided. The method includes forming a dielectric layer on a substrate; forming a contact in the dielectric layer; recessing the dielectric layer so that the upper portion of the contact protrudes from the upper surface of the dielectric layer; and etching the upper portion of the contact to reduce the size of the upper portion of the contact. The semiconductor structure includes a substrate, a contact on the substrate and having an upper portion and a lower portion, a liner on the sidewall and bottom of the lower portion of the contact, and a dielectric layer surrounding the contact. The dielectric layer is in direct contact with the sidewall of the upper portion of the contact.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: October 17, 2023
    Assignee: WINBOND ELECTRONICS CORP.
    Inventor: Chia-Hsin Huang
  • Patent number: 11792971
    Abstract: An SRAM cell includes: first, second, third, fourth, and fifth dielectric fins disposed in this order along a first direction and oriented lengthwise along a second direction, where the first and the fifth dielectric fins define two edges of the SRAM cell; a first n-type semiconductor fin structure disposed between the first and the second dielectric fins; a second n-type semiconductor fin structure disposed between the fourth and the fifth dielectric fins; a first p-type semiconductor fin structure disposed between the second and the third dielectric fins; a second p-type semiconductor fin structure disposed between the third and the fourth dielectric fins, where each of the first and the second n-type semiconductor fin structures and each of the first and the second p-type semiconductor fin structures is oriented lengthwise along the second direction; and gate structures oriented lengthwise along the first direction, where the gate structures engage with one or more of the dielectric fin.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 11785768
    Abstract: A three-dimensional semiconductor memory device includes a substrate, an electrode structure including a plurality of gate electrodes sequentially stacked on the substrate in a first direction that extends perpendicular to an upper surface of the substrate, a source conductive pattern between the substrate and the electrode structure, a vertical semiconductor pattern penetrating the electrode structure and the source conductive pattern, and a data storage pattern extending in the first direction between the vertical semiconductor pattern and the electrode structure. A lower surface of the data storage pattern contacts the source conductive pattern. A portion of the lower surface of the data storage pattern is at a different height from the upper surface of the substrate, in relation to a height of another portion of the lower surface of the data storage pattern from the upper surface of the substrate.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: October 10, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Euntaek Jung, Joongshik Shin, Dongyoun Shin
  • Patent number: 11785781
    Abstract: An integrated circuit construction comprising memory comprises two memory-cell-array regions having a peripheral-circuitry region laterally there-between in a vertical cross-section. The two memory-cell-array regions individually comprise a plurality of capacitors individually comprising a capacitor storage node electrode, a shared capacitor electrode that is shared by the plurality of capacitors, and a capacitor insulator there-between. A laterally-extending insulator structure is about lateral peripheries of the capacitor storage node electrodes and is vertically spaced from a top and a bottom of individual of the capacitor storage node electrodes in the vertical cross-section. The peripheral-circuitry region in the vertical cross-section comprises a pair of elevationally-extending walls comprising a first insulative composition. A second insulative composition different from the first insulative composition is laterally between the pair of walls.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: October 10, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Mitsunari Sukekawa