Patents Examined by Juan C Valencia
  • Patent number: 10808176
    Abstract: The delayed coking method includes directing a heated secondary feedstock, which contains heated primary feedstock and recirculate, from a reaction furnace to a coking chamber. Vapor-liquid coking products formed in the coking chamber are then directed to a fractionation column, which fractionates hydrocarbon gas, gasoline, light and heavy gas oils, and bottom residues. Heavy gas oil from the fractionation column is directed to a thermal cracking furnace, the products of which are cooled by cooled light gas oil and directed to an evaporator for separation. In the evaporator, gases and light boiling products are removed by evaporation and returned to the fractionation column, and the remaining distillate cracking residue is separated and used as a component of the recirculate, along with bottom residues from the fractionation column. The resulting process produces high quality and high yield needle and anode cokes.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: October 20, 2020
    Assignee: Westport Trading Europe, Ltd.
    Inventor: Nikolay Yurchenko
  • Patent number: 10808184
    Abstract: This development proposed adding a catalyst to an oxygen stripper. The oxygen stripper would be run at a temperature just below or at coking temp. The oxygen stripper includes a catalyst containing Group VI or VII metals to remove free radicals. Most preferably, the catalyst is a nickel-molybdenum catalyst.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 20, 2020
    Assignee: Marathon Petroleum Company LP
    Inventor: Howard F. Moore
  • Patent number: 10800986
    Abstract: A paraffin control unit with staged high voltage temperature controlled electric immersion heaters to maintain the paraffin component of the crude oil in the liquid phase. The paraffin control unit removes large volumes of naturally occurring fine sand from the incoming liquids while also removing the crude oil from the influent fluid stream, the natural gas from the influent fluid stream, salt water from the influent fluid stream, all while maintaining the temperature of the crude oil fraction above the cloud point of its paraffin constituent. The removed sand is collected in sand pans and is automatically removed at timed intervals. The automation assures that the accumulating sand is removed from the sand pans as rapidly as it accumulates, thus preventing an over-accumulation of sand. The process fluids flow through a coalescer and a baffle assembly which purify and separate the component phases suitable for custody transfer.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: October 13, 2020
    Assignee: Oil Capital NOW, LLC
    Inventor: Will D. Ball, IV
  • Patent number: 10787617
    Abstract: Provided are embodiments that include a hydrocarbon fluid processing system including an ultrasonic hydrocarbon degassing unit including a vapor recovery vessel adapted to direct flow of a hydrocarbon fluid mixture along a flowpath extending through an interior of the vapor recovery vessel, and an ultrasonic transducer system disposed inside the vapor recovery vessel and in the flowpath of the hydrocarbon fluid mixture. The hydrocarbon fluid mixture including a hydrocarbon liquid and a gas entrained in the hydrocarbon liquid, the ultrasonic transducer system adapted to transmit ultrasonic signals into the hydrocarbon fluid mixture along the flowpath, and the ultrasonic signals adapted to separate the gas from the hydrocarbon liquid.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: September 29, 2020
    Assignee: COG Operating LLC
    Inventor: Brian Colt Petty
  • Patent number: 10781377
    Abstract: A process and apparatus for catalytically cracking fresh heavy hydrocarbon feed to produce cracked products is disclosed. A fraction of the cracked products can be obtained to re-crack it in a downer reactor. The downer reactor may produce high selectivity to light olefins. Spent catalyst from both reactors can be regenerated in the same regenerator.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: September 22, 2020
    Assignee: UOP LLC
    Inventors: James M. Bell, Dharmesh C. Panchal
  • Patent number: 10780430
    Abstract: Methods are provided for forming noble metal catalysts comprising both platinum and a second Group VIII metal, such as palladium, with improved aromatic saturation activity. Instead of impregnating a catalyst with both platinum and another Group VIII metal at the same time, a sequential impregnation can be used, with the Group VIII metal being impregnated prior to platinum. It has been discovered that by forming a Group VIII metal-impregnated catalyst first, and then impregnating with platinum, the distribution of platinum throughout the catalyst can be improved. The improved distribution of platinum can result in a catalyst with enhanced aromatic saturation activity relative to a catalyst with a similar composition formed by simultaneous impregnation.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: September 22, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Matthew S. Ide, Stephen J. McCarthy, Gary P. Schleicher
  • Patent number: 10760015
    Abstract: An installation for the hydrotreatment and hydroconversion of hydrocarbon-containing feedstocks, with a common fractionation section, for the production of at least one of the following products: naphtha (light and/or heavy), diesel, kerosene, distillate and residue: comprising at least: at least one hydroconversion reactor, a hot high-pressure separator drum B-1, a cold high-pressure separator drum B-2, at least one hydrotreatment reactor, a cold high-pressure separator drum B-20, a common fractionation section separating a top fraction, an intermediate fraction and a heavy fraction, An integrated hydroconversion and hydrotreatment process implementing said installation.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: September 1, 2020
    Assignee: AXENS
    Inventors: Nicolas Pupat, Odile Lajeunesse, Jerome Bonnardot, Christelle Pourcelly, Benoit Despres
  • Patent number: 10752842
    Abstract: The present disclosure refers to a process and a process plant for extraction of metals from a hydrocarbon mixture obtained from a gasification or pyrolysis process, comprising the steps of combining said hydrocarbon mixture with an aqueous acid forming a mixture, mixing said mixture, separating said mixture in a contaminated aqueous phase and a purified hydrocarbon phase, with the associated benefit of said aqueous acid being able to release metals bound in such gasification and pyrolysis processes.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 25, 2020
    Assignee: HALDOR TOPSØE A/S
    Inventors: Rasmus Gottschalck Egeberg, Angelica Hidalgo Vivas, Søren Selde Enevoldsen
  • Patent number: 10752848
    Abstract: A process for hydrocracking hydrocarbon-containing VD feedstocks allowing the improved production of middle distillates: a) hydrocracking of feedstocks in hydrogen and at least one hydrocracking catalyst, b) gas/liquid separation of effluent originating from a) producing a liquid effluent and a gaseous effluent with hydrogen, c) comprising the gaseous effluent before recycling into hydrocracking a), d) fractionation of liquid effluent into at least one effluent of converted hydrocarbon-containing products having boiling points less than 340° C. and an unconverted liquid fraction having a boiling point greater than 340° C., e) hydrocracking unconverted liquid fraction from d), in hydrogen and a hydrocracking catalyst, f) hydrotreating effluent from e) in a mixture with a hydrocarbon-containing gas-oil liquid feedstock having at least 95% by weight of compounds boiling at a boiling point between 150 and 400° C., hydrotreating f) operating in hydrogen and with at least one hydrotreating catalyst.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 25, 2020
    Assignee: IFP Energies nouvelles
    Inventors: Jan Verstraete, Elodie Tellier, Thomas Plennevaux, Emmanuelle Guillon, Anne Claire Pierron
  • Patent number: 10753646
    Abstract: An apparatus for heating a process fluid is presented. The apparatus is for improving the foot-print of a fired heater and to reduce the fired heater volume. The apparatus includes a W-shaped process coil to provide for a smaller single-cell fired heater, and a fired heater with a lower profile, providing flexibility in positioning relative to downstream reactors.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: August 25, 2020
    Assignee: UOP LLC
    Inventors: Rajeswar Gattupalli, Quan Yuan, Clayton C. Sadler, Michael J. Vetter, Bryan J. Egolf
  • Patent number: 10752847
    Abstract: An integrated hydrothermal process for upgrading heavy oil includes the steps of mixing a heated water stream and a heated feed in a mixer to produce a mixed fluid, introducing the mixed stream to a reactor unit to produce a reactor effluent that includes light fractions, heavy fractions, and water, cooling the reactor effluent in a cooling device to produce a cooled fluid, depressurizing the cooled fluid in a depressurizing device to produce a depressurized fluid, introducing the depressurized fluid to a flash drum configured to separate the depressurized fluid into a light fraction stream and a heavy fraction stream. The light fraction stream includes the light fractions and water and the heavy fraction stream includes the heavy fractions and water. The process further includes the step of introducing the heavy fraction stream to an aqueous reforming unit that includes a catalyst to produce an aqueous reforming outlet.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: August 25, 2020
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi, Bader M. Alotaibi, Ali S. Al-Nasir
  • Patent number: 10745628
    Abstract: A hydrogenation catalyst with a small amount of supported metal that is excellent in stability and inhibition of side reactions is provided. The catalyst hydrogenates an aromatic hydrocarbon compound into an alicyclic hydrocarbon compound, and a Group X metal represented by nickel is supported in a composite support including at least alumina and titania. The composite support preferably includes at least an alumina substrate coated with titania. It is also preferable that the Group X metal is prereduced by hydrogen. In the case that the Group X metal is nickel, the nickel content is preferably 5-35 wt % as nickel oxide in the catalyst. The substrate includes, for example, a porous structure formed by a plurality of needle-shaped or column-shaped intertwined three-dimensionally.
    Type: Grant
    Filed: September 9, 2017
    Date of Patent: August 18, 2020
    Inventors: Kenichi Imagawa, Haruto Kobayashi, Akihiro Muto, Shinichi Inoue
  • Patent number: 10745630
    Abstract: A method of reducing catalyst agglomeration in a slurry hydrocracking zone containing at least two reactors is described. A hydrocarbon feed and a slurry hydrocracking catalyst are contacted in a first reactor to form a first effluent containing slurry hydrocracking reaction products, unreacted hydrocarbon feed, and the slurry hydrocracking catalyst, wherein the slurry hydrocracking catalyst agglomerates. The first effluent and an unsupported hydrogenation catalyst are contacted in a second reactor to form a second effluent containing the slurry hydrocracking reaction products, unreacted hydrocarbon feed, the slurry hydrocracking catalyst, and asphaltene reaction products.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 18, 2020
    Assignee: UOP LLC
    Inventors: Grant H. Yokomizo, Daniel J. Pintar, Gavin P. Towler
  • Patent number: 10731088
    Abstract: A catalytic composition and process for using same. The catalyst may be utilized for an oxidation reaction, for example, for the conversion of mercaptans to disulfides. The catalyst includes a metal component, for example, cobalt phthalocyanine structure. The organic component may comprise any number of different oxidation promoters that are capable of promoting the reduction of oxygen, preferably in a caustic, environment. The organic component may comprise an unsaturated six member ring having at least five carbon atoms, and wherein the sixth member of the six member ring is either C or N, and in which at least two substituent groups are present on the six membered ring.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 4, 2020
    Assignee: UOP LLC
    Inventors: Yili Shi, Neil Thomas
  • Patent number: 10731086
    Abstract: The present disclosure is directed to an apparatus and a compact riser separation system for separating a gaseous mixture from a stream of particles entering from a central riser reactor used for cracking a hydrocarbon feed with the stream of particles. The apparatus provides improved gas solid separation efficiency and maximize containment of the hydrocarbon and minimize residence time in the separation system and thereby minimizing undesired post riser cracking reactions.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: August 4, 2020
    Assignee: Technip Process Technology, Inc.
    Inventors: Paul Marchant, Raj Kanwar Singh
  • Patent number: 10723961
    Abstract: A system for producing American Petroleum Institute Standards Group III Base Stock from vacuum gas oil, by injecting hydrogen, heating, partially saturating the vacuum gas oil through a plurality of hydrogen reactors connected in series with a liquid hourly space velocity (LHSV)?1 of from 0.5 to 2.5, forming a saturated heated base oil, and coproduct. The system fractionates the saturated heated base oil to while simultaneously refluxing a cooled fuel oil fraction forming an American Petroleum Institute Standards Group III Base Stock with less than 0.03% sulfur, with greater than 90% saturates and a viscosity index greater than 120 as defined by ASTM D-2270, a viscosity from 2 to 10 centistokes as defined by ASTM D-445 a boiling range from 600 degrees F. to 1050 degrees F., and a cold crank viscosity (CCS) between 1200 and 5000 centipoise at ?25 degrees C. and as defined by ASTM D-5293.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: July 28, 2020
    Assignee: VERTEX ENERGY
    Inventors: Benjamin Cowart, David Peel, Frank Lappin, James Craig Smith
  • Patent number: 10717941
    Abstract: Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and fluid catalytic cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline and FCC naphtha aromatics extraction zone within the battery limits.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: July 21, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Mohammed Saeed Al-Ghamdi, Bader BaHammam, Naif Al Osaimi, Sami Barnawi
  • Patent number: 10711200
    Abstract: A water-based extraction process for extracting bitumen from mined oil is provided comprising providing a water-based mixture containing bitumen; and introducing nanobubbles to the mixture to attach to bitumen and, thereby, extract the bitumen from the water-based mixture, wherein a nanobubble has a diameter of less than 5,000 nm.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: July 14, 2020
    Assignee: SYNCRUDE CANADA LTD. in trust for the owners of the Syncrude Project as such owners exist now and in the future
    Inventor: Jun Long
  • Patent number: 10711199
    Abstract: A processing apparatus includes a microwave processing chamber. In addition, the processing apparatus includes a rigid, rotatable feed wheel rotatable about an axis of rotation such that a part of the feed wheel is located within the processing chamber. Further, the processing apparatus includes a feed device configured to deposit materials to be processed onto the feed wheel. Still further, the processing apparatus includes an output into which processed materials from the feed wheel can be deposited.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 14, 2020
    Inventors: George Burnett, Mike Bradley, John Robinson
  • Patent number: 10696905
    Abstract: The present invention relates to a pressure-controlled oil refining device for refining oil from liquid-state oil waste. The purpose of the present invention is to provide a pressure-controlled oil refining device wherein: liquid-state oil waste is introduced and then heated such that, as the pressure rises, the vaporized fluid (oil+impurities) is transferred in the upward direction; a pressure valve is opened/closed such that the oil and impurities can be separated from the fluid and then discharged; the oil is condensed by a cooler such that the same can be liquefied again and stored; and the oil can be refined from the oil waste and reused.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 30, 2020
    Inventor: Yongil Park