Patents Examined by Julia Slutsker
  • Patent number: 10629740
    Abstract: A semiconductor device includes channels, a gate structure, and a source/drain layer. The channels are disposed at a plurality of levels, respectively, and spaced apart from each other in a vertical direction on an upper surface of a substrate. The gate structure is disposed on the substrate, at least partially surrounds a surface of each of the channels, and extends in a first direction substantially parallel to the upper surface of the substrate. The source/drain layer is disposed at each of opposite sides of the gate structure in a second direction substantially parallel to the upper surface of the substrate and substantially perpendicular to the first direction and is connected to sidewalls of the channels. A length of the gate structure in the second direction changes along the first direction at a first height from the upper surface of the substrate in the vertical direction.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: April 21, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-Gil Yang, Beom-Jin Park, Seung-Min Song, Geum-Jong Bae, Dong-Il Bae
  • Patent number: 10629834
    Abstract: The present disclosure relates to the field of display, in particular to a thin film transistor, a method for preparing the same, and a display device. The thin film transistor of the present disclosure includes a gate electrode, a gate insulating layer, a semiconductor layer, a source electrode, a drain electrode, and a photoelectric conversion layer in contact with the gate electrode. The photoelectric conversion layer is configured to generate an induced potential in a light environment.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: April 21, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Song Liu, Yu Wen, Jianming Sun, Zhengliang Li, Xiaochen Ma, Hehe Hu, Wenlin Zhang, Jianhua Du, Ce Ning
  • Patent number: 10615337
    Abstract: A method for a photo and/or electron beam lithographic fabricating processes for producing a pillar array test device. The method includes receiving a wafer having a plurality of bit cells arranged in a grid and etching a plurality of bottom electrode traces to connect a plurality of bottom electrode pads in a centrally located bit cell to each of the bit cells in the grid. The method further includes fabricating an array of magnetic tunnel junction pillars onto each respective pad in the centrally located bit cell. The wafer is then planarized. The method further includes etching a plurality of top electrode traces to connect the plurality of magnetic tunnel junction pillars to each of the bit cells in the grid, and outputting the wafer for subsequent testing.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: April 7, 2020
    Assignee: Spin Memory, Inc.
    Inventors: Pradeep Manandhar, Prachi Shrivastava, Mustafa Pinarbasi, Thomas Boone
  • Patent number: 10615125
    Abstract: A device is provided that includes a first die having a first alignment structure that includes a plurality of first transmission columns arranged in a pattern and a second die positioned on the first die, the second die having a second alignment structure that includes a plurality of second transmission columns arranged in the same pattern as the first transmission columns. The first and second transmission columns are each coplanar with a first surface and a second surface of the first and second die, respectively.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: April 7, 2020
    Assignee: STMicroelectronics, Inc.
    Inventors: John H. Zhang, Walter Kleemeier, Paul Ferreira, Ronald K. Sampson
  • Patent number: 10608030
    Abstract: An image sensor may include an array of imaging pixels. Each imaging pixel may have a photosensitive area that is covered by a respective diffractive lens to focus light onto the photosensitive area. The diffractive lenses may have a higher index of refraction than the surrounding materials. The diffractive lenses may be formed on an upper or lower surface of a planarization layer or may be embedded within the planarization layer. In some cases, multiple diffractive lenses may be formed over the imaging pixels. Some of the multiple diffractive lenses may have refractive indexes lower than the planarization layer such that the diffractive lenses defocus light. Focusing and defocusing diffractive lenses may be used to tune the response of the imaging pixels to incident light.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: March 31, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Byounghee Lee
  • Patent number: 10590339
    Abstract: A method for producing a converter element, a converter element and a light emitting device are disclosed. In an embodiment a method for producing a converter element providing at least one phosphor and a liquid polysiloxane resin and preparing a cured polysiloxane powder from a first fraction of the liquid polysiloxane resin. The method further includes preparing a mixture including the at least one phosphor, the cured polysiloxane powder and a second fraction of the liquid polysiloxane resin, casting and curing the mixture to a cured layer and singulating the cured layer.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: March 17, 2020
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alan Piquette, Maxim N. Tchoul, Gertrud Kräuter
  • Patent number: 10580865
    Abstract: Embodiments of the present disclosure describe a semiconductor multi-gate transistor having a semi-conductor fin extending from a substrate and including a sub-fin region and an active region. The sub-fin region may include a dielectric material region under the gate to provide improved isolation. The dielectric material region may be formed during a replacement gate process by replacing a portion of a sub-fin region under the gate with the dielectric material region, followed by fabrication of a replacement gate structure. The sub-fin region may be comprised of group III-V semiconductor materials in various combinations and concentrations. The active region may be comprised of a different group III-V semiconductor material. The dielectric material region may be comprised of amorphous silicon. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: March 3, 2020
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Matthew V. Metz, Gilbert Dewey, Chandra S. Mohapatra, Nadia M. Rahhal-Orabi, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
  • Patent number: 10566465
    Abstract: A semiconductor device includes a first N-type deep well region and a second N-type deep well region formed in a substrate, an N-type diffused well region formed between the first N-type deep well region and the second N-type deep well region, wherein a concentration of the N-type diffused well region is less than a concentration of the first N-type deep well region or the second N-type deep well region, a first P-type well region formed in the first N-type deep well region, a second P-type well region formed in the N-type diffused well region, an insulating film formed to be in contact with the first P-type well region, and a silicide formed on the N-type diffused well region, such that a Schottky barrier diode is formed between the silicide and the N-type diffused well.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: February 18, 2020
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Yon Sup Pang, Hyun Kwang Shin, Tae Hoon Lee
  • Patent number: 10553689
    Abstract: Embodiments of the invention include a high voltage transistor with one or more field plates and methods of forming such transistors. According to an embodiment, the transistor may include a source region, a drain region, and a gate electrode formed over a channel region formed between the source region and drain region. Embodiments of the invention may also include a first interlayer dielectric (ILD) formed over the channel region and a second ILD formed over the first ILD. According to an embodiment, a first field plate may be formed in the second ILD. In an embodiment the first field plate is not formed as a single bulk conductive feature with the gate electrode. In some embodiments, the first field plate may be electrically coupled to the gate electrode by one or more vias. In alternative embodiments, the first field plate may be electrically isolated from the gate electrode.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: February 4, 2020
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Sansaptak Dasgupta, Marko Radosavljevic, Sanaz K. Gardner, Seung Hoon Sung
  • Patent number: 10546885
    Abstract: A method for fabricating a thin film transistor includes providing a substrate (100); forming a semiconductor layer (105) over the substrate (100); forming a source-drain metal layer (106) over the semiconductor layer (105); applying one patterning process to the semiconductor layer (105) and the source-drain metal layer (106) to form an active layer (1), a source electrode (2), and a drain electrode (3); forming a gate insulating layer (101) and an interlayer insulating layer (102) that cover the active layer (1), the source electrode (2), and the drain electrode (3); applying a patterning process to the interlayer insulating layer (102) to form a first window (10) in the interlayer insulating layer (102) to expose a portion of the gate insulating layer (101); and forming a gate electrode (4) in the first window (10). An orthogonal projection of the gate electrode (4) on the substrate (100) is in an orthogonal projection of the active layer (1) on the substrate (100).
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: January 28, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Shi Shu, Chuanxiang Xu, Teng Luo, Feng Gu, Bin Zhang
  • Patent number: 10541285
    Abstract: The present disclosure relates to a pixel isolation bank and a method of manufacturing the same. A pixel isolation bank, comprising a first lyophobic layer located at a predetermined height of the pixel isolation bank.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: January 21, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Huifeng Wang, Jing Gan
  • Patent number: 10541140
    Abstract: A process for metalizing a through silicon via feature in a semiconductor integrated circuit device, the process including, during the filling cycle, reversing the polarity of circuit for an interval to generate an anodic potential at said metalizing substrate and desorb leveler from the copper surface within the via, followed by resuming copper deposition by re-establishing the surface of the copper within the via as the cathode in the circuit, thereby yielding a copper filled via feature.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: January 21, 2020
    Assignee: MACDERMID ENTHONE INC.
    Inventors: Thomas B. Richardson, Joseph A. Abys, Wenbo Shao, Chen Wang, Vincent Paneccasio, Jr., Cai Wang, Xuan Lin, Theodore Antonellis
  • Patent number: 10535752
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes a pair of source/drain regions disposed in a semiconductor substrate, where the source/drain regions are laterally spaced. A gate electrode is disposed over the semiconductor substrate between the source/drain regions. Sidewall spacers are disposed over the semiconductor substrate on opposite sides of the gate electrode. A silicide blocking structure is disposed over the sidewalls spacers, where respective sides of the source/drain regions facing the gate electrode are spaced apart from outer sides of the sidewall spacers and are substantially aligned with outer sidewalls of the silicide blocking structure.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kong-Beng Thei, Chien-Chih Chou, Hsiao-Chin Tuan, Yi-Huan Chen, Alexander Kalnitsky
  • Patent number: 10535736
    Abstract: The present disclosure describes an exemplary method to form p-type fully strained channel (PFSC) or an n-type fully strained channel (NFSC) that can mitigate epitaxial growth defects or structural deformations in the channel region due to processing. The exemplary method can include (i) two or more surface pre-clean treatment cycles with nitrogen trifluoride (NF3) and ammonia (NH3) plasma, followed by a thermal treatment; (ii) a prebake (anneal); and (iii) a silicon germanium epitaxial growth with a silicon seed layer, a silicon germanium seed layer, or a combination thereof.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 14, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Huai-Tei Yang, Zheng-Yang Pan, Shih-Chieh Chang, Chun-Chieh Wang, Cheng-Han Lee
  • Patent number: 10529758
    Abstract: A method for forming an image sensor package and an image sensor package are provided. The method includes: providing a first substrate and a second substrate which includes a first surface and a second surface opposite to the first surface, and attaching either surface of the first substrate with the first surface of the second substrate with an adhesive layer; forming a groove at the second surface of the second substrate; providing a base which includes a first surface and a second surface opposite to the first surface, where the first surface of the base is provided with a sensing region and multiple contact pads; and attaching the second surface of the second substrate with the first surface of the base, where a cavity is formed between the groove and the base, and the sensing region is located within the cavity.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: January 7, 2020
    Assignee: China Wafer Level CSP Co., Ltd.
    Inventors: Zhiqi Wang, Qiong Yu, Wei Wang
  • Patent number: 10529676
    Abstract: A semiconductor assembly with a package on package (POP) structure includes a first semiconductor package having a first lower substrate, a first upper substrate facing the first lower substrate, and a first semiconductor chip mounted on an area of the first lower substrate. The POP structure further includes a second semiconductor package having a second lower substrate stacked on the first semiconductor package and spaced apart from the first semiconductor package, and a second semiconductor chip mounted in an area of the second lower substrate. At least one passive element is disposed in one of the first upper substrate and the second lower substrate and electrically connected to the second semiconductor chip.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: January 7, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ki Cheol Bae, Chul Woo Park, Kwang Sub Lee, Sang Gyun Lee, Se Young Jang, Chi Hyun Cho
  • Patent number: 10522629
    Abstract: A method of forming a semiconductor structure includes forming an opening in a dielectric layer, forming a recess in an exposed part of a substrate, and forming a lattice-mismatched crystalline semiconductor material in the recess and opening.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jizhong Li, Anthony J. Lochtefeld
  • Patent number: 10522694
    Abstract: A semiconductor device includes channel layers disposed over a substrate, a source/drain region disposed over the substrate, a gate dielectric layer disposed on and wrapping each of the channel layers, and a gate electrode layer disposed on the gate dielectric layer and wrapping each of the channel layers. Each of the channel layers includes a semiconductor wire made of a core region, and one or more shell regions. The core region has an approximately square-shape cross section and a first shell of the one or more shells forms a first shell region of an approximately rhombus-shape cross section around the core region and is connected to an adjacent first shell region corresponding to a neighboring semiconductor wire.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: I-Sheng Chen, Szu-Wei Huang, Hung-Li Chiang, Cheng-Hsien Wu, Chih Chieh Yeh
  • Patent number: 10510840
    Abstract: A semiconductor device is disclosed. The semiconductor device includes a channel region, extending along a direction, that has a U-shaped cross-section; a gate dielectric layer wrapping around the channel region; and a gate electrode wrapping around respective central portions of the gate dielectric layer and the channel region.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: December 17, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jie-Cheng Deng, Yi-Jen Chen, Chia-Yang Liao
  • Patent number: 10504789
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu