Patents Examined by Jung H. Kim
  • Patent number: 8659348
    Abstract: A current mirror comprises first and second sets of transistors. each of the first and second sets is a matched set comprising a first transistor and a second transistor. For each set, the base of the first transistor is directly coupled to the base of the second transistor. For one of the first and second transistors of each set the base is directly coupled to the collector. The collectors of the first and second transistors of the first set are coupled, respectively, to the emitters of the first and second transistors of the second set in series. A current output of the current mirror is coupled between the collector of the second transistor of the first set and the emitter of the second transistor of the second set.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 25, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Juan Luis López Rodriguez, Sergio Alejandro López Ramos, Javier González Bruno
  • Patent number: 8659336
    Abstract: Signal synchronizers synchronize input signals with a clock signal. The input of each synchronizer is connected to a first input and the output of each synchronizer is connected to a second input of a respective first gate arrangement. The first gate arrangements provide an output signal only if there is an input signal on the first input and none on the second input or vice versa. The outputs of each of the first gate arrangements is connected to respective inputs of a second gate arrangement, which provides an output signal if there is a signal on any of its inputs. The output of the second gate arrangement is connected to a third gate arrangement which operates such that the clock signal to the synchronizers is only enabled when there is a change to the state of a signal received at the input of at least one of the synchronizers.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: February 25, 2014
    Assignee: Broadcom Corporation
    Inventors: Ari Tapani Kulmala, Yang Qu
  • Patent number: 8659337
    Abstract: One embodiment of the present invention sets forth a technique for capturing and holding a level of an input signal using a latch circuit that presents a low number of loads to the clock signal. The clock is only coupled to a bridging transistor and a pair of clock-activated pull-down or pull-up transistors. The level of the input signal is propagated to the output signal when the storage sub-circuit is not enabled. The storage sub-circuit is enabled by the bridging transistor and a propagation sub-circuit is activated and deactivated by the pair of clock-activated transistors.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: February 25, 2014
    Assignee: NVIDIA Corporation
    Inventors: Ilyas Elkin, William James Dally, Jonah M. Alben
  • Patent number: 8659349
    Abstract: A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N?1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2? radians or a multiple thereof, where N is greater than 1.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: February 25, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Colin Lyden, Donal Bourke, Dennis A. Dempsey, Dermot G. O'Keeffe, Patrick Kirby
  • Patent number: 8653884
    Abstract: A microcomputer includes a first switch coupled between a main power supply terminal and a power supply node, and a second switch coupled between an auxiliary power supply terminal and the power supply node. The microcomputer compares a voltage V1 of the main power supply terminal with a reference voltage VR1. When V1>VR1, the microcomputer turns on the first switch and turns off the second switch, and when V1<VR1, the microcomputer turns off the first switch, and turns on/off the second switch to gradually increase a voltage V3 of the power supply node. Thus, the operation of a clock generation circuit driven by V3 can be stable even when V3 is changed from V1 to V2.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 18, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yuichiro Miwa, Masahiro Kitamura
  • Patent number: 8648644
    Abstract: The switch control device controls a switching operation of a power switch. The switch control device includes an auxiliary power device. The auxiliary power device includes a parasitic capacitor, and charges the parasitic capacitor by receiving a power voltage to generate an auxiliary power voltage. The switch control device includes a control pulse generator driven by the auxiliary power voltage and generating a set pulse and a reset pulse according to an input signal that is input for controlling the switching operation of the power switch. The switch control device generates a gate signal that turns on the power switch by being synchronized with the set pulse and generates a gate signal that turns off the power switch by being synchronized with the reset pulse.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: February 11, 2014
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Kunhee Cho, Sung-Yun Park, Donghwan Kim
  • Patent number: 8643419
    Abstract: An output buffer includes a pullup driver, a pulldown driver, and an output stage. The pullup driver has a drive control input, and an output for providing a pullup drive signal in a push-pull mode in response to receiving a first drive control signal on the drive control input, and in a current limited mode in response to receiving a second drive control signal on said drive control input. The pulldown driver has a drive control input, and an output for providing a pulldown drive signal in the push-pull mode in response to receiving a third drive control signal on the drive control input, and in the current limited mode in response to receiving a fourth drive control signal on the drive control input. The output stage provides a voltage on an output terminal in response to the pullup and pulldown drive signals.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 4, 2014
    Assignee: Silicon Laboratories Inc.
    Inventor: Timothy T. Rueger
  • Patent number: 8638163
    Abstract: A semiconductor device and a method of operating the semiconductor device. The semiconductor device includes a voltage generator configured to generate a test voltage, a graphene transistor configured to receive a gate-source voltage based on the test voltage, and a detector configured to detect whether the gate-source voltage is a Dirac voltage of the graphene transistor, and output a feedback signal applied to the voltage generator indicating whether the gate-source voltage is the Dirac voltage.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ho-jung Kim, U-in Chung, Jai-kwang Shin
  • Patent number: 8633761
    Abstract: Disclosed herein is a power amplifier insensitive to load impedance changes. According to the present invention, the power amplifier comprises a power amplification circuit which amplifies an input signal, an output matching circuit connected to an output terminal of the power amplification circuit to perform impedance matching between the power amplification circuit and an antenna load, and a 4-port coupler connected between the output matching circuit and the antenna load.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: January 21, 2014
    Assignee: Gwangju Institute of Science and Technology
    Inventor: Jong Soo Lee
  • Patent number: 8633738
    Abstract: Output driver feedback circuitry is configured to sense an amount of output capacitance of an output pad and to adjust the strength of the output driver accordingly. The feedback circuitry adjusts the output driver within a single cycle. A chain of delay reference signals is generated by representative capacitive loads that replicate a range of actual output loads. Adjustments to the output driver are based on a comparison of the delay reference signals with output of the output driver.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 21, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Wilson J. Chen, Chiew-Guan Tan
  • Patent number: 8633755
    Abstract: A load driver includes a switching element connected to a load, a constant current generator that generates a constant current, and a driver circuit that turns on the switching element for an on-period, which depends on a value of the constant current and is shortened with an increase in the value of the constant current. The constant current generator supplies a first constant current having a first current value to the driver circuit during the on-period, and supplies a second constant current having a second current value smaller than the first current value after the on-period has elapsed and the switching element reaches an on state.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 21, 2014
    Assignee: DENSO CORPORATION
    Inventors: Teppei Kawamoto, Ryotaro Miura
  • Patent number: 8629715
    Abstract: An apparatus for propagating local oscillator signals in a circuit, the apparatus comprising two pairs of lines carrying respectively differential in-phase and quadrature signals. The lines are arranged such that in at least one region along their length one of each pair of lines crosses the other of the pair to create a twist. The twist(s) in each respective pair of lines is offset from the twist(s) in the other pair of lines such that the portion of their length over which the in-phase lines magnetically couple to the quadrature lines with a positive coupling coefficient is substantially equal to the portion of their length over which the in-phase lines magnetically couple to the quadrature lines with a negative coupling coefficient.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: January 14, 2014
    Assignee: Cambridge Silicon Radio Limited
    Inventors: Giuseppe Gramegna, Pasquale Lamanna, Maxime Vignasse
  • Patent number: 8629695
    Abstract: The present invention discloses a multi-stage sample and hold (S/H) circuit that includes: a first S/H circuit for sampling a sensing signal of a sensor multiple times and accumulating them into a first sampled signal, and outputting the first sampled signal; and a second S/H circuit for receiving the plurality of first sampled signals and accumulating them into a second sampled signal. As a result, when one or more first sampled signals are saturated due to instantaneous noise, the second sampled signal is not saturated, thereby increasing the noise tolerance of the multi-stage S/H circuit.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: January 14, 2014
    Assignee: Egalax—Empia Technology Inc.
    Inventors: Chin-Fu Chang, Guang-Huei Lin
  • Patent number: 8629713
    Abstract: A voltage regulator bypass circuit to control bypass of a voltage regulator of an integrated circuit device, the voltage regulator bypass circuit including a first voltage detector, a second voltage detector, and circuit. The first voltage detector to detect that a core circuitry voltage level is above a first threshold and to assert a first detect signal at an output in response to the detection. The second voltage detector to detect that an unregulated supply voltage is above a second threshold and to assert a second detect signal at an output in response to the detection. The circuit having a first input coupled to the output of the first voltage detector and a second input coupled to the output of the second voltage detector, the circuit to bypass the voltage regulator in response the output of the latch being cleared.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: January 14, 2014
    Assignees: Freescale Semiconductor, Inc., STMicroelectronics SRL, STMicroelectronics Private Ltd.
    Inventors: Stefano Pietri, Chris C. Dao, Juxiang Ren, Nicolas Grosssier, V Srinivasan
  • Patent number: 8624633
    Abstract: An oscillator circuit includes an oscillator output signal generating circuit configured to generate an oscillator output signal using an oscillator as a resonator, an amplitude detection circuit configured to detect the amplitude of the oscillator output signal and compare the detected amplitude with a threshold; and a boost circuit configured to boost the oscillator output signal according to the result of the comparison at the amplitude detection circuit. The amplitude detection circuit includes an absolute value circuit configured to obtain an absolute value signal of the oscillator output signal, a low-pass filter configured to convert the absolute value signal into a low-frequency signal, and a comparator configured to compare the low-frequency signal with the threshold.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: January 7, 2014
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Minoru Sakai, Takayuki Nakamura, Akira Komiya
  • Patent number: 8624635
    Abstract: The present invention provides a circuit for concurrent integration of multiple differential signals. The circuit comprises a plurality of Stage 1 integration circuits arranged in an array and a plurality of Stage 2 integration circuits arranged in an array. Each of the Stage 1 integration circuits is configured to concurrently integrate an input signal, and to send out a Stage 1 positive signal and a Stage 1 negative signal that is reverse to the Stage 1 positive signal. Each of the Stage 2 integration circuits is configured to integrate a differential signal from a Stage 1 positive signal sent from a corresponding Stage 1 integration circuit and a Stage 1 negative signal sent from another Stage 1 integration circuit next to the corresponding Stage 1 integration circuit to output a Stage 2 signal.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: January 7, 2014
    Assignee: Egalax—Empia Technology Inc.
    Inventors: Chin-Fu Chang, Guang-Huei Lin
  • Patent number: 8610492
    Abstract: The present invention provides a high voltage tolerant regulated inverting charge pump circuit utilizing low-voltage semiconductor devices, capable of operation directly from a high voltage source. The circuit according to the present invention comprises a plurality of high voltage tolerant pre-driver circuits, connected to the high voltage source, for driving the charge pump low voltage switching devices appropriately for reliable operation. A flying capacitive element connected to the high voltage source through a plurality of low voltage semiconductor devices acting as a switch, peak current limiter, and cascode device. An output capacitive element connected to the flying capacitive element through a plurality of low voltage semi-conductor devices acting as a switch, peak current limiter, regulating element and cascode device.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 17, 2013
    Assignee: ST-Ericsson SA
    Inventors: J. Raja Prabhu, Shyam Somayajula
  • Patent number: 8610480
    Abstract: The present invention relates to a clock signal generating circuit and a power supply including the same. The present invention includes: a counter for counting one period of an input clock signal by using a reference clock signal, and generating a count signal; and a clock signal generator for receiving the count signal and the reference clock signal, dividing the count signal to generate a quotient and a remainder, setting the quotient as a reference period of an output clock signal, and distributing and disposing the remainder to the output clock signal with a plurality of periods occurring for one period of the input clock signal.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: December 17, 2013
    Assignee: Fairchild Korea Semiconductor Ltd.
    Inventors: Kunhee Cho, Donghwan Kim, Young-Je Lee
  • Patent number: 8610467
    Abstract: A sample and hold circuit is provided. The circuit includes a plurality of switches, a first capacitor, an operational amplifier having a first input selectively coupled to the first capacitor and an output, a second capacitor and a third capacitor both selectively coupled to the first capacitor and both selectively coupled between the first input of the operational amplifier and the output of the operational amplifier, wherein the plurality of switches are configured to receive a plurality of control signals such that the first capacitor is configured to sample an input signal in a sample phase and to transfer a charge to one of the second capacitor and the third capacitor in a hold phase, and the second capacitor and third capacitor are configured to alternate between holding the transferred charge and resetting in any back-to-back hold phases.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: December 17, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mohammad Nizam U. Kabir, Douglas A. Garrity, Rakesh Shiwale
  • Patent number: 8604837
    Abstract: A detector circuit, has a first diode, to an anode of which an AC signal is input and to which a constant voltage is supplied, a second diode, to an anode of which the constant voltage is supplied, and a difference current generation circuit, which generates the difference current between a first current flowing in the first diode and a second current flowing in the second diode.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: December 10, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Hiroyuki Nakamoto