Patents Examined by Jung Kim
  • Patent number: 10784857
    Abstract: Adaptive gate drivers and related methods and systems are disclosed. An example gate driver system includes a comparator, a latch having first and second inputs and outputs, the first input coupled to the comparator, a timer having an input and an output, the input coupled to the first output of the latch, the output coupled to the second input of the latch, control logic having an input and first and second outputs, the input coupled to the second output of the latch, first and second transistors having a gate, a first buffer having an input and an output, the input coupled to the first output of the control logic, the output coupled to the gate of the first transistor, and a second buffer having an input and an output, the input coupled to the second output of the control logic, the output coupled to the gate of the second transistor.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: September 22, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Xiong Li, Adam Lee Shook
  • Patent number: 10784680
    Abstract: The present invention includes self-contained, rechargeable power systems for areas having unreliable electrical grids or no electrical grid at all, and methods related thereto. The system may include one or more solar panels of various sizes to provide an off-grid power generation source, battery receivers for receiving batteries of various chemistries, and a control circuitry that is operable to detect the voltage and/or current output of the batteries that are installed in the system to determine their specific battery chemistry and then adjust the charge algorithm of the batteries to optimize both the charge capacity and the cycle life of the batteries. The control circuitry may also be operable to switch configurations of the solar panels and/or the batteries to optimize performance of the system. The system may be operable to power one or more light emitters and/or external electronic devices connected through the system by a charge port.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: September 22, 2020
    Assignee: Elevate Technologies Corporation
    Inventor: John C. Ellenberger
  • Patent number: 10778230
    Abstract: A method for reducing deterministic jitter in a clock generator includes providing a load current through a regulated voltage node to a circuit responsive to a divide ratio. The method includes providing an auxiliary current through the regulated voltage node. The auxiliary current has a first current level during a first period corresponding to a first value of the divide ratio and the auxiliary current has a second current level during a second period corresponding to a second value of the divide ratio.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: September 15, 2020
    Assignee: Silicon Laboratories Inc.
    Inventors: Aaron J. Caffee, Brian G. Drost
  • Patent number: 10778206
    Abstract: Apparatus and methods for biasing radio frequency (RF) switches to achieve fast switching are disclosed herein. In certain configurations, a switch bias circuit generates a switch control voltage for turning on or off a switch that handles RF signals. The switch bias circuit provides the switch control voltage to a control input of the switch by way of a resistor. Additionally, the switch bias circuit pulses the switch control voltage when turning on or off the switch to thereby shorten switching time. Thus, the switch can be turned on or off quickly, which allows the switch to be available for use soon after the state of the switch has been changed.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: September 15, 2020
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Turusan Kolcuoglu, Huseyin Kayahan, Yusuf Alperen Atesal
  • Patent number: 10770920
    Abstract: A wireless power transmission system includes a first antenna, a second antenna configured to perform wireless power transmission with the first antenna, and a movement unit configured to move a position of the second antenna relative to the first antenna in a predetermined moving direction, wherein the second antenna is shorter in length in the moving direction than the first antenna, wherein a distance between at least one end portion of the first antenna in the moving direction and the second antenna at a position where the second antenna faces the end portion is longer than a distance between an intermediate portion of the first antenna and the second antenna at a position where the second antenna faces the intermediate portion, and wherein the intermediate portion of the first antenna is a portion of the first antenna excluding both end portions of the first antenna.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 8, 2020
    Assignee: Canon Kabushiki Kaisha
    Inventor: Jun Morita
  • Patent number: 10771112
    Abstract: A power transmitter is configured to transfer power to a power receiver using a wireless inductive power signal. The power transmitter includes a power signal generator configured to drive an inductor to provide the power signal to an inductor of the power receiver. A power loop control is employed by the power receiver for providing power control error messages to the power transmitter, which also includes a query message processor configured to detect a query message from the power receiver using load modulation of the power signal. A modification processor of the power receiver is configured to modify a response of the power loop controller to the power control error messages dependent on the query message. The power receiver is configured to detect the modifications to the operation of the power control and interpret this as a response from the power transmitter to the query message from the power receiver.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 8, 2020
    Assignee: Koninklijke Philips N.V.
    Inventors: Antonius Adriaan Maria Staring, Andries Van Wageningen
  • Patent number: 10763826
    Abstract: A first transistor (2a), a second transistor (2b), a third transistor (2c) and a fourth transistor (2d) are provided. A first transistor (2a) amplifies a first I signal VIP inputted from a first input terminal (1a). A second transistor (2b) amplifies a first Q signal VQP inputted from a second input terminal (1b). A third transistor (2c) amplifies a second I signal VIN when the second I signal VIN is inputted from a third input terminal (1c), the second I signal VIN forming a differential signal with the first I signal VIP. A fourth transistor (2d) amplifies a second Q signal VQN when the second Q signal VQN is inputted from a fourth input terminal (1d), the second Q signal VQN forming a differential signal with the first Q signal VQP.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 1, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Akihito Hirai, Mitsuhiro Shimozawa
  • Patent number: 10763739
    Abstract: A power conversion device includes: a first low voltage side circuit and a first high voltage side circuit which are connected via a first transformer; and a second low voltage side circuit and a second high voltage side circuit which are connected via a second transformer, wherein switching timings of the first high voltage side circuit and the second high voltage side circuit are controlled such that a current difference of an input current to the first low voltage side circuit and an input current to the second low voltage side circuit during a step-up operation becomes smaller than a predetermined value. A driver circuit to output a drive signal of a switching element may be included in at least one of the first low voltage side circuit and the second low voltage side circuit.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: September 1, 2020
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Shintaro Tanaka, Takae Shimada, Tadahiko Chida, Mikito Komatsu
  • Patent number: 10756732
    Abstract: An inductive sensor is proposed which comprises at least one resonant circuit, an evaluation device which in a measuring phase evaluates oscillations of the at least one resonant circuit for generating sensor signals, an energy storage device, and a transfer device which in a relaxation phase of the at least one resonant circuit stores oscillation energy of the at least one resonant circuit in the energy storage device.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: August 25, 2020
    Assignee: BALLUFF GmbH
    Inventor: Simon Mahler
  • Patent number: 10749534
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 18, 2020
    Assignee: Analog Devices, Inc.
    Inventor: Reuben P. Nelson
  • Patent number: 10749429
    Abstract: Methods and systems of reducing a substrate noise in a charge pump having a flying capacitor are provided. An input node of the flying capacitor is pre-charged at a first slew rate. The input node of the flying capacitor is charged at a second slew rate that is faster than the first slew rate. The input node of the flying capacitor is pre-discharged at a third slew rate. The input node of the flying capacitor is discharged at a fourth slew rate that is faster than the first slew rate.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 18, 2020
    Assignee: Linear Technology LLC
    Inventor: Barry Harvey
  • Patent number: 10749095
    Abstract: Systems and methods are provided for a ZZZ coupler. A first tunable coupler is coupled to the first qubit and tunable via a first control signal. A second tunable coupler is coupled to the first tunable coupler to direct a flux of the first qubit into a tuning loop of the second tunable coupler, such that when a first coupling strength associated with the first tunable coupler is non-zero, a second coupling strength, associated with the second tunable coupler, is a function of a second control signal applied to the second tunable coupler and a state of the first qubit. The second qubit and the third qubit are coupled to one another through the second tunable coupler, such that, when the second coupling strength is non-zero it is energetically favorable for the states of the first and second qubits to assume a specific relationship with respect to the Z-axis.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: August 18, 2020
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: David George Ferguson, Anthony Joseph Przybysz, Joel D. Strand
  • Patent number: 10749513
    Abstract: Droop monitors spread across a system-on-chip (SoC) monitor for voltage droops in regulated supply voltage supplied to logic circuitry of the SoC. In the event of a voltage droop, a clock signal supplied to the logic circuitry is stretched, to temporarily increase a period of the clock signal. The droop monitors may include a sensing delay line provided voltage at the regulated supply voltage, and a reference delay line supplied with a reference voltage, with operations of the delay lines monitored to determine a voltage droop.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: August 18, 2020
    Assignee: Chaoyang Semiconductor Jiangyin Technology Co., Ltd.
    Inventor: Hassan Ihs
  • Patent number: 10741538
    Abstract: In one well bias arrangement, no well bias voltage is applied to the n-well, and no well bias voltage is applied to the p-well. Because no external well bias voltage is applied, the n-well and the p-well are floating, even during operation of the devices in the n-well and the p-well. In another well bias arrangement, the lowest available voltage is not applied to the p-well, such as a ground voltage, or the voltage applied to the n+-doped source region of the n-type transistor in the p-well. This occurs even during operation of the n-type transistor in the p-well. In yet another well bias arrangement, the highest available voltage is not applied to the n-well, such as a supply voltage, or the voltage applied to the p+-doped source region of the p-type transistor in the n-well. This occurs even during operation of the p-type transistor in the n-well.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 11, 2020
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Jamil Kawa, James D. Sproch, Robert B. Lefferts
  • Patent number: 10742199
    Abstract: A semiconductor device that retains a state of a data storage element during a power reduction mode including supply rails and voltages, and a storage latch and a retention latch both powered by retention supply voltage that remains energized during a power reduction mode. The storage latch and the retention latch are both coupled to a retention node that is toggled between first and second states before entering the power reduction mode. The toggling causes the storage latch to latch the state of the data storage element during the normal mode, and the retention node enables the storage element to hold the state during the power reduction mode. The retention latch includes a retention transistor and a retention inverter powered by the retention supply voltage. The retention inverter keeps the retention transistor turned on and the retention transistor holds the state of the retention node during the power reduction mode.
    Type: Grant
    Filed: May 20, 2019
    Date of Patent: August 11, 2020
    Assignee: Silicon Laboratories Inc.
    Inventors: Thomas S. David, Wasim Quddus
  • Patent number: 10742202
    Abstract: Techniques for autozero to an offset value for a slope detector for voltage droop monitoring are described herein. An aspect includes generating a first offset voltage by a circuit. Another aspect includes generating a second offset voltage by the circuit, the second offset voltage being distinct from the first offset voltage. Another aspect includes, based on a first comparator of the circuit entering an autozero mode, connecting a first terminal of the first comparator to the first offset voltage. Another aspect includes connecting a second terminal of the first comparator to the second offset voltage. Yet another aspect includes performing an autozero operation in the first comparator, wherein a trip point of the first comparator is set to a difference between the first offset voltage and the second offset voltage by the autozero operation.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: August 11, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Erik English, Michael Sperling
  • Patent number: 10742052
    Abstract: An apparatus and method for synchronously discharging multiple capacitive loads. In one embodiment, the apparatus includes first and second discharge circuits for discharging first and second capacitive loads, respectively. The apparatus also includes a control circuit coupled to the first and second discharge circuits and configured to control the second discharge circuit. The control circuit includes a first scaler circuit configured to generate a first scaled voltage based on a first voltage on the first capacitive load, a second scaler circuit configured to generate a second scaled voltage based on a second voltage on the second capacitive load, and a comparator circuit for comparing the first and second scaled voltages. The comparator circuit asserts a control signal when the second scaled voltage exceeds the first scaled voltage. The second discharge circuit discharges the second capacitive load when the comparator circuit asserts its control signal.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: August 11, 2020
    Assignee: NXP USA, Inc.
    Inventors: Marcos Mauricio Pelicia, Andre Luis Vilas Boas
  • Patent number: 10734978
    Abstract: In described examples, a latch includes circuitry for latching input information. The circuitry can be precharged in response to an indication of a first mode and can latch the input information to an indication of a second mode. The latch can optionally further latch the input information in response to a node for storing the latched input information.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: August 4, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Soman Purushothaman, Sankar Prasad Debnath, Per Torstein Roine, Steven C. Bartling, Keshav Bhaktavatson Chintamani
  • Patent number: 10734140
    Abstract: In an example, a device comprises a first resistor coupled to a second resistor and to a trim resistor, the second resistor and the trim resistor coupled to a port configured to couple to a third resistor. The device also comprises a comparator having an inverting input coupled to a first node between the second resistor and the port and a non-inverting input coupled to a second node between the first resistor and the trim resistor. The device further includes a trim control circuit coupled to an output of the comparator and having an output coupled to the trim resistor, the trim control circuit configured to couple to multiple integrated trim resistors external to the device.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: August 4, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Roy Alan Hastings
  • Patent number: 10734973
    Abstract: A circuit and method are provided. The method couples a first bias signal to a first internal node and a second internal node via a first resistor and a second resistor, respectively, couples a second bias signal to a third internal node and a fourth internal node via a third resistor and a fourth resistor, respectively. The method further couples the first internal node to the second internal node via a switch of a first type controlled by a first control signal, couples the third internal node to the fourth internal node via a switch of a second type controlled by a second control signal, wherein the second control signal is an inversion of the first control signal, couples a first terminal to the first internal node and the third internal node via a first capacitor and a third capacitor, respectively; and couples a second terminal to the second internal node and the fourth internal node via a second capacitor and a fourth capacitor, respectively.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: August 4, 2020
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventor: Chia-Liang (Leon) Lin