Patents Examined by Karen E. Toth
  • Patent number: 12369821
    Abstract: A system includes a sensor applicator, a sensor control device arranged within the sensor applicator and including an electronics housing and a sensor extending from a bottom of the electronics housing, and a cap coupled to one of the sensor applicator and the sensor control device, wherein the cap is removable prior to deploying the sensor control device from the sensor applicator.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: July 29, 2025
    Assignee: ABBOTT DIABETES CARE INC.
    Inventor: Peter G. Robinson
  • Patent number: 12337115
    Abstract: An endotracheal tube apparatus is provided which comprises an endotracheal tube insertable into a trachea of a patient, wherein the endotracheal tube has a sidewall and includes a first passageway, wherein the first passageway is a ventilation passageway to provide ventilation to the patient; a fluid sampling port connected to the sidewall of the endotracheal tube; the fluid sampling port including a fluid sampling passageway, the fluid sampling passageway to obtain a fluid sample comprising one or more gases exhaled from the patient; and the fluid sampling port including a connector to connect the fluid sampling port to an analyzer to detect a presence of carbon dioxide gas in the fluid sample.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: June 24, 2025
    Assignee: MONITORING FOR LIFE, INC.
    Inventor: Scott P. Geraghty
  • Patent number: 12336818
    Abstract: Example biosensor devices having wake-up batteries and associated methods are disclosed. One example device includes a biosensor that has a first electrode for insertion into a subcutaneous layer beneath a patient's skin, and a second electrode coupled to the first electrode for insertion into the subcutaneous layer, and a first battery to apply a voltage across the first and second electrodes, the first battery at least partially electrically decoupled from the electrodes. The device also includes a second battery having an anode material coupled to the first electrode for insertion into the subcutaneous layer, and a portion of the second electrode. The second battery is activatable upon immersion in an electrolytic fluid. The device also includes a wake-up circuit to receive a signal from the second battery and, in response, to electrically couple the first battery to the first and second electrodes to activate the biosensor.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: June 24, 2025
    Assignees: Dexcom, Inc., Verily Life Sciences LLC
    Inventors: William Biederman, Zenghe Liu
  • Patent number: 12310723
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 27, 2025
    Assignee: Dexcom, Inc.
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Patent number: 12220259
    Abstract: The present disclosure is directed to intravascular devices, systems, and methods having a core member coupled to a shaping ribbon with an adhesive. In some aspects, a sensing guide wire is provided. The sensing guide wire can include a flexible elongate member; and a sensing element coupled to a distal portion of the flexible elongate member, wherein the distal portion of the flexible elongate member includes: a core member; and a shaping ribbon fixedly secured to the core member by an adhesive and at least one connecting sleeve. In other aspects, methods of forming a sensing guide wire are provided.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: February 11, 2025
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: David Holt Burkett, Samuel Ritter
  • Patent number: 12193827
    Abstract: Disclosed are a method and an apparatus for classifying patients with brain disorders based on EEG analysis. The method for classifying patients with brain disorders based on EEG analysis includes: (a) receiving an EEG data set with a clinical diagnosis label, wherein the EEG data set includes a plurality of EEG signals and age information; (b) augmenting the EEG data set through a deep learning-based screening model, and augmenting the EEG signals and the age information in different schemes; (c) training the deep learning-based screening model to classify EEG data of patients into a target clinical diagnosis label by using the augmented EEG signals and age information; and (d) predicting a brain diagnosis label of brain disorders by applying EEG data of patients to the trained deep learning-based screening model.
    Type: Grant
    Filed: December 20, 2023
    Date of Patent: January 14, 2025
    Assignee: CHUNG ANG UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION
    Inventors: Joon Ki Paik, Young Chul Youn, Min Jae Kim
  • Patent number: 12144622
    Abstract: An enzyme sensor is configured to measure a measurement target substance included in a secretion of a living body. The enzyme sensor includes a layered structure including (a) an absorber layer configured to absorb the secretion, (b) an enzyme layer containing an enzyme, and (c) an electrode part arranged in an order of the (a), the (b), and the (c). The absorber layer includes a polymeric material having a chemically bound crosslinked structure.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: November 19, 2024
    Assignee: JSR Corporation
    Inventors: Masayasu Fujioka, Akinori Ito, Kenichi Hamada
  • Patent number: 12127841
    Abstract: The present disclosure relates to an upper limb multi-joint impedance measurement method and an apparatus using the same.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: October 29, 2024
    Assignee: Ulsan National Institute of Science and Technology
    Inventors: Sang Hoon Kang, Sung Shin Kim, Hyunah Kang
  • Patent number: 12112854
    Abstract: Presented herein is a handheld analyte measurement device. The analyte measurement device includes one or more software applications to help the user manager their diabetes. Embodiments and descriptions of the various applications are provided below in conjunction with the handheld analyte measurement device.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: October 8, 2024
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Daniel M. Bernstein, Brittany K. Bradrick, Erwin S. Budiman, Eric Davis, Timothy C. Dunn, Mani Gopal, Wesley S. Harper, Gary A. Hayter, Steve Scott, Todd Winkler, Howard Wolpert
  • Patent number: 12109008
    Abstract: A method for determining a calibrated aortic pressure waveform from a brachial cuff waveform involves the use of one or more generalized transfer functions. The one or more generalized transfer functions are specific for predetermined brachial cuff pressure ranges, such as below diastolic pressure, between diastolic and systolic pressure, and above systolic pressure. The brachial cuff is inflated to a pressure within the pressure range appropriate for the generalized transfer function to be applied to the brachial cuff waveform to generate the aortic pressure waveform. In some circumstances, it may be necessary to use a calibration transfer function to generate a calibrated aortic waveform. In other circumstances, the calibration transfer function is not necessary.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: October 8, 2024
    Assignee: AtCor Medical Pty Ltd
    Inventor: Ahmad M. Qasem
  • Patent number: 12064242
    Abstract: A photometry device can include a first to emit light to a target in response to a first current through the first LED, a second LED to emit light to the target in response to a second current through the second LED, and an inductor, coupled to the first and second LEDs, to store energy associated with at least one of the first and second currents.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 20, 2024
    Assignee: Analog Devices International Unlimited Company
    Inventors: John Jude O'Donnell, Colin G. Lyden, Michael C. W. Coln
  • Patent number: 12059272
    Abstract: The application relates to a method for analyzing continuously monitored physiological measurement values of a user, the method being performed in a data processing system and comprising: providing, by a data interface, a set of present physiological measurement values, determining whether a common pattern of values is contained in both the set of present physiological measurement values and a set of historical physiological measurement values, if the common pattern of values is found, requesting the user to provide contextualization for at least the present physiological measurement values of the common pattern of values, receiving contextualization and storing contextualized data. Furthermore, the application relates to a device for analyzing continuously monitored physiological measurement values of a user.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: August 13, 2024
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Bernd Steiger, Juergen Rasch-Menges
  • Patent number: 12029606
    Abstract: A medical device (20) includes a case (32), having a front surface that is configured to be brought into contact with a body of the living subject (24). A microphone (34) is contained in the case and configured to sense acoustic waves emitted from the body and to output an acoustic signal in response thereto. A proximity sensor (56) is configured to output a proximity signal indicative of contact between the front surface and the body. At least one speaker (49) is configured to output audible sounds. Processing circuitry (50) is coupled to detect, in response to the proximity signal, that the front surface is in contact with the body, and in response to the detected contact, to process the acoustic signal so as to generate an audio output and to convey the audio output to the at least one speaker.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: July 9, 2024
    Assignee: SANOLLA LTD.
    Inventors: Doron Adler, Igor Kagan, Ezra Salomon, Omri Adler, David Linhard
  • Patent number: 11980463
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic—cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: May 14, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz, Udo Hoss
  • Patent number: 11957488
    Abstract: A medical device includes a sensor to observe a characteristic of an anatomy, and a sensor base coupled to the sensor. The medical device includes a coupling system to couple the sensor base to the anatomy. The coupling system includes a first adhesive member and a second adhesive member. The first adhesive member is coupled to the sensor base and the second adhesive member is to couple to the anatomy. The first adhesive member includes at least one cut-out to direct moisture to an ambient environment surrounding the medical device.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic Minimed, Inc.
    Inventors: Jasson Rodriguez, Ellis Garai, Ravi R. Deverkadra, Sara M. Voisin, Jacob E. Pananen
  • Patent number: 11950884
    Abstract: Embodiments of the present disclosure are configured to assess the severity of a blockage in a vessel and, in particular, a stenosis in a blood vessel. In some particular embodiments, the devices, systems, and methods of the present disclosure are configured to assess the severity of a stenosis in the coronary arteries without the administration of a hyperemic agent.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: April 9, 2024
    Assignees: PHILIPS IMAGE GUIDED THERAPY CORPORATION, IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY & MEDICINE, MEDSOLVE LIMITED
    Inventors: Justin Davies, Joseph Burnett, Neil Hattangadi, David Anderson, Helen Davies
  • Patent number: 11937901
    Abstract: An arteriovenous fistula (AVF) stenosis detection system and method thereof and sensing device are provided. The AVF stenosis detection system includes: a sensing device including a microphone; and a server coupled to the sensing device. The sensing device contacts a first location of a patient body, wherein there is a first distance between the first location and a second location of an AVF of the patient body, and the first location is located on an extended path of an artery or a vein corresponding to the AVF. The sensing device receives a frequency spectrum signal through the microphone and transmits the frequency spectrum signal to the server. The server calculates a stenosis percentage of the AVF corresponding to the frequency spectrum signal through a machine learning module and transmits the stenosis percentage to the sensing device.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: March 26, 2024
    Assignee: Above Care Inc.
    Inventors: Wei-Ta Chen, Yung-Hsin Chen
  • Patent number: 11937916
    Abstract: A system and method for remotely monitoring an individual, in accordance with some embodiments of the invention. More particularly, one or more physiological functions and/or physical activities of the individual may be monitored. In order to monitor the individual, a range to, and/or a range rate (i.e., velocity) of, one or more points on one or more surfaces of the individual (e.g., skin, clothing, lips, etc.) may be determined over time. Based on the determinations of the range and/or range rate of the points on the surfaces of the individual, the one or more physiological functions and/or physical activities of the individual may be monitored. This may enable the physiological functions and/or physical activities to be monitored remotely from the individual without access or proximity to the individual.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: March 26, 2024
    Assignee: Aeva, Inc.
    Inventors: Richard Lee Sebastian, Kendall L. Belsley
  • Patent number: 11918349
    Abstract: Disclosed herein are techniques related to model predictive control. The techniques may involve generating a desired glucose trajectory that approaches a desired steady state setpoint from a current glucose value over a prediction horizon. The techniques may involve generating a plurality of insulin delivery patterns. Each insulin delivery pattern may correspond to an amount of insulin to be delivered over a control horizon. The techniques may involve generating a plurality of predicted glucose trajectories over the control horizon. Each predicted glucose may be generated based on the current glucose value and a respective insulin delivery pattern. The techniques may involve comparing the desired glucose trajectory against each predicted glucose trajectory and selecting a predicted glucose trajectory that is more similar to the desired glucose trajectory than any other predicted glucose trajectory.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: March 5, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Garry M. Steil, Sami S. Kanderian, Jr., Martin T. Cantwell, Udo Hoss
  • Patent number: 11877829
    Abstract: A system and method for characterising a narrowing in a fluid filled tube, the system comprising: a probe having a first measurement sensor to take an instantaneous measurement at different locations along the tube; a mechanism to draw the probe through the tube; a position measure to provide location data relating to the location at which a respective instantaneous measurement is taken by the first measurement sensor; a processor to calculate, from the instantaneous measurements, a characteristic of the tube at different locations along the tube.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: January 23, 2024
    Assignee: MEDSOLVE LIMITED
    Inventors: Helen Catherine Stuart Davies, Justin Davies