Patents Examined by Kaveh C Kianni
  • Patent number: 11927806
    Abstract: Disclosed is a system and method for communication using an efficient fiber-to-chip grating coupler with a high coupling efficiency.
    Type: Grant
    Filed: May 5, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Feng-Wei Kuo, Lan-Chou Cho, Huan-Neng Chen, Chewn-Pu Jou
  • Patent number: 11927818
    Abstract: An optical module has an optical port and an electrical port, and includes a shell, a circuit board, a circuit adapter board, a silicon optical chip, a light source and an optical fiber socket. The circuit board is disposed in the shell. One end of the circuit board is provided with a connecting finger located in the electrical port. The circuit adapter board is disposed on and electrically connected to the circuit board. A thermal expansion coefficient of the circuit adapter board is lower than that of the circuit board. The silicon optical chip is disposed on and electrically connected to the circuit adapter board. The light source is disposed on the circuit board, is electrically connected to the circuit board, and is optically connected to the silicon optical chip. The optical fiber socket is optically connected to the silicon optical chip, and is configured to form the optical port.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: March 12, 2024
    Assignee: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD.
    Inventors: Long Zheng, Sigeng Yang
  • Patent number: 11921324
    Abstract: A photodetector is realized which does not need an additional circuit for an inspection and may perform a characteristic evaluation inspection of optical input and electrical output such as optical sensitivity and OE characteristics of a photodetector alone with respect to wavelength and temperature dependent characteristics. A photodetector is provided in which light absorption layers are formed on a semiconductor substrate, the photodetector detects signal light incident on the light absorption layers from a direction in a substrate surface of the semiconductor substrate, and the light absorption layers have a portion not covered by an electrode for photocurrent detection connected with the light absorption layers in a case where the substrate surface of the semiconductor substrate is seen from a direction from an outside of the substrate surface.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: March 5, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Kotaro Takeda, Yusuke Nasu
  • Patent number: 11921334
    Abstract: An alignment structure of optical element is provided, including: an optical fiber, having a parallel fiber segment and a plurality of bare fiber segments; a cover plate, provided with a plurality of side-by-side guide grooves and a plurality of first coupling parts, the bare fiber segments of the optical fiber being arranged in the corresponding guide grooves, cross-sectional shapes of the guide grooves being at least one of U-shaped or V-shaped; and a silicon chip, provided with lines and a plurality of second coupling parts; when the cover plate is matched with the silicon chip, the first coupling parts and the second coupling parts being coupled and positioned with each other respectively, and the optical fiber being fixed between the silicon chip and the cover plate. As such, precise positioning and rapid assembly are achieved.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: March 5, 2024
    Assignee: FOCI FIBER OPTIC COMMUNICATIONS, INC.
    Inventors: Ting-Ta Hu, Hsu-Liang Hsiao, Po-Yi Wu
  • Patent number: 11921335
    Abstract: The invention relates to an optical light guiding system, comprising an interface for coupling in and/or an interface for decoupling data and at least one data channel for transmitting data, and a method for transmitting data in optical systems, comprising the steps of coupling data into an interface of a beam guidance element; the transmission of the data by means of a first and/or a second data channel, which are arranged within the beam guiding element (or the casing), wherein the data channels can also be used for the fractional monitoring of the beam guiding element; and decoupling the data from an interface.
    Type: Grant
    Filed: July 11, 2022
    Date of Patent: March 5, 2024
    Assignee: II-VI DELAWARE, INC.
    Inventors: Eduard Armbruster, Frank Schulze
  • Patent number: 11914203
    Abstract: A substrate includes a first area in which a laser array chip is disposed. The substrate includes a second area in which a planar lightwave circuit is disposed. The second area is elevated relative to the first area. A trench is formed in the substrate between the first area and the second area. The substrate includes a third area in which an optical fiber alignment device is disposed. The third area is located next to and at a lower elevation than the second area within the substrate. The planar lightwave circuit has optical inputs facing toward and aligned with respective optical outputs of the laser array chip. The planar lightwave circuit has optical outputs facing toward the third area. The optical fiber alignment device is configured to receive optical fibers such that optical cores of the optical fibers respectively align with the optical outputs of the planar lightwave circuit.
    Type: Grant
    Filed: August 22, 2022
    Date of Patent: February 27, 2024
    Assignee: Ayar Labs, Inc.
    Inventors: Michael Davenport, Mark Wade, Chong Zhang
  • Patent number: 11914188
    Abstract: An atom trap integrated platform (ATIP) comprises a substrate, a membrane, and a suspended waveguide. The substrate has an opening formed therein. The membrane extends across a portion of the substrate opening. The suspended waveguide is formed on the membrane such that the suspended waveguide extends from a first edge of the substrate to a second edge. A magneto-optical trap (MOT) is formed around the suspended waveguide by emitting a plurality of cooling beams and a repump through the substrate opening. Evanescent fields are established above the suspended waveguide by coupling two trapping beams through the suspended waveguide, which trapping beams are red-detuned and blue-detuned with respect to the resonant optical transition of the atoms. By forming the MOT within the evanescent fields, an evanescent field optical trap (EFOT) is formed.
    Type: Grant
    Filed: December 9, 2021
    Date of Patent: February 27, 2024
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Jongmin Lee, Michael Gehl, Grant Biedermann, Yuan-Yu Jau, Christopher T. DeRose
  • Patent number: 11914199
    Abstract: A laser light energy coupling with a male launch connecter. The male launch connector having a body portion with the fiber optic line terminating at an optical connection component including a male ferrule. The optical connection component being elongate and generally cylindrical with a central circumferential band. The body portion defining a cavity form fit and spaced about the optical connection component. An elastomeric support engaging the optical connection portion provides compliancy when the coupling is made and provides centration before the coupling is made. The elastomeric support positioned rearward of the optical connection component. The elastomeric support may clamp the fiber optic line therein. A forward facing annular surface displaced rearwardly of a forwardmost portion of the male ferrule provides a stop surface when the coupling is made and provides heat transfer means to dissipate heat from the male ferrule through into a receiving coupling.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: February 27, 2024
    Assignee: IPG Photonics Corporation
    Inventors: Christopher Gaal, Gregory Altshuler, Valery Kozlov
  • Patent number: 11914204
    Abstract: An optical connector device is provided. The optical connector device includes a semiconductor package including a receptacle and a lid. The optical connector device also included an adapter attached to the lid of the semiconductor package, and a connector removably attached to the adapter. The adapter includes a convex part adapted to fit into an adapter opening of the lid, an adapter recess adapted to accommodate at least a portion of the connector, and a first retainer in the adapter recess to removably attach the connector to the adapter at a predetermined position. The connector includes an optical fiber array corresponding to the receptacle and extending in a vertical direction with respect to a plane of the semiconductor package, a second retainer used in conjunction with the first retainer, and a biasing member to bias a portion of the connector toward the semiconductor package.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: February 27, 2024
    Assignee: International Business Machines Corporation
    Inventors: Masao Tokunari, Koji Masuda, Hsiang Han Hsu
  • Patent number: 11914195
    Abstract: A fiber optic ferrule receiver includes a main body that has an opening extending between the front end and the rear end and being defined at least by a portion of internal surfaces of the four sides. A first side in the opening has first tapered surface and a second tapered surface, the first tapered surface reducing the opening between the rear end and a first position and the second tapered surface increasing the opening between the first position and the front end. There is also a second side in the opening and across the opening from the first side, the second side has a third tapered surface and a fourth tapered surface, the third tapered surface reducing the opening between the rear end and a second position and the second tapered surface increasing the opening between the second position and the front end.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: February 27, 2024
    Assignee: US Conec Ltd.
    Inventors: Jason Higley, Darrell R. Childers, Craig M. Conrad
  • Patent number: 11906739
    Abstract: A display subsystem for a virtual image generation system for use by an end user comprises a planar waveguide apparatus, an optical fiber, at least one light source configured for emitting light from a distal end of the optical fiber, and a collimation element mounted to a distal end of the optical fiber for collimating light from the optical fiber. The virtual image generation system further comprises a mechanical drive assembly to which the optical fiber is mounted to the drive assembly. The mechanical drive assembly is configured for displacing the distal end of the optical fiber, along with the collimation element, in accordance with a scan pattern. The virtual image generation system further comprises an optical waveguide input apparatus configured for directing the collimated light from the collimation element down the planar waveguide apparatus, such that the planar waveguide apparatus displays image frames to the end user.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: February 20, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Lionel Ernest Edwin, Ivan Yeoh, Aaron Mark Schuelke, William Hudson Welch, John Graham Macnamara
  • Patent number: 11906797
    Abstract: An object is, in a pluggable optical module, to compactly house an optical fiber used for connecting optical components in a housing in which a plurality of optical components are mounted. The pluggable optical module (100) includes: a plurality of optical components, a printed circuit board (51); one or more optical fibers; and optical fiber housing means (14). All or a part of the plurality of optical components are mounted on the printed circuit board (51). One or more optical fibers connect between the plurality of optical components. The optical fiber housing means (14) includes a guide that is disposed on a plate-like member and can wind the one or more optical fibers, and mounted to be stacked with the printed circuit board (51) on which the optical components are mounted and all or a part of optical components other than the optical components mounted on the printed circuit board (51).
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: February 20, 2024
    Assignee: NEC CORPORATION
    Inventor: Yuuji Minota
  • Patent number: 11899250
    Abstract: A flexible optical fiber connector comprises a first housing component configured to couple to a terminating connector, and a second housing component configured to receive an optical fiber for termination in the terminating connector. The first housing component and the second housing component are further configured to receive a pushable connector therethrough. A flexible optical fiber connector assembly comprises a flexible connector and a terminating connector coupled thereto. The flexible connector assembly is configured to couple to an adapter held by a holder coupled to a port.
    Type: Grant
    Filed: August 27, 2022
    Date of Patent: February 13, 2024
    Assignee: Clearfield, Inc.
    Inventors: John P. Hill, Brian Larson, Jeffrey Gniadek, David J. Johnsen, James John Henschel, Matthew John Brigham
  • Patent number: 11892694
    Abstract: Provided is an optical fiber ribbon capable of achieving higher density and reduction in diameter and accurately placing optical fibers in V-shape grooves in a fusion machine without failure. The optical fiber ribbon 1 includes three or more of optical fibers 2 arranged in parallel and connecting portions 3 connecting adjacent two optical fibers 2 together, the connecting portions 3 being intermittently provided in each of a ribbon longitudinal direction and a ribbon width direction. The connecting portions 3 are each formed in such a manner as to fill resin into a gap S formed between adjacent two optical fibers 2, and both surfaces of the respective connecting portions 3 are each formed into a recess having a concave shape curved toward a center of the gap S to separate from lines 4,5 each connecting contact points of the optical fibers 2 when being placed on a horizontal surface.
    Type: Grant
    Filed: June 15, 2022
    Date of Patent: February 6, 2024
    Assignees: FUJIKURA LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Akira Namazue, Ken Osato, Naoki Okada, Yusuke Yamada, Daisuke Kakuta, Hisaaki Nakane, Shinya Hamaguchi
  • Patent number: 11892682
    Abstract: A diffractive optical waveguide and a display device having the same are disclosed, which waveguide comprises a grating structure formed on a surface of a waveguide substrate. The grating structure comprises a plurality of grating lines arranged in a plane, which extend along a first direction in the plane and are arranged at a predetermined interval in a second direction perpendicular to the first direction; at least one sidewall of each grating line has a periodic structure along the first direction; and the grating structure is configured to diffract light incident thereon at a non-zero angle with respect to the plane, out of the plane through a predetermined diffraction order. The grating structure in the diffractive optical waveguide can be used to adjust diffraction efficiency on different angles and/or diffraction orders, thereby providing a new effective and flexible means for improving angular uniformity and/or coupling-out efficiency of the waveguide.
    Type: Grant
    Filed: March 14, 2023
    Date of Patent: February 6, 2024
    Assignee: JIAXING UPHOTON OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Zhentao Fan, Xingming Zhao, Kehan Tian
  • Patent number: 11892684
    Abstract: A tool for a plug, including a plug body fitted to an adapter and a slider supported on the plug body, includes an insertion portion and a handle. The insertion portion is configured to catch the slider. The handle extends in a direction opposite to the insertion portion. The handle includes a fragile part having a locally small cross-sectional area perpendicular to the direction in which the handle extends.
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: February 6, 2024
    Assignee: SEIKOH GIKEN CO., LTD.
    Inventors: Junji Taira, Masayuki Jibiki, Naotoshi Shiokawa
  • Patent number: 11892689
    Abstract: The present disclosure relates to an optical fiber alignment device that has an alignment housing that includes first and second ends. The alignment housing defines a fiber insertion axis that extends through the alignment housing between the first and second ends. The alignment housing includes a fiber alignment region at an intermediate location between the first and second ends. First and second fiber alignment rods are positioned within the alignment housing. The first and second fiber alignment rods cooperate to define a fiber alignment groove that extends along the fiber insertion axis. The first and second fiber alignment rods each having rounded ends positioned at the first and second ends of the alignment housing.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: February 6, 2024
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Michael Gurreri, Robert Charles Flaig, Randall Bobby Paul, Danny Willy August Verheyden, David Donald Erdman, Dwight A. Bretz
  • Patent number: 11885841
    Abstract: An electric field sensor which measures an electric field generated by a target utilizing an electro-optic effect, the electric field sensor including a light source, an electro-optic crystal on which light in a predetermined polarization state emitted from the light source is incident and which is subjected to the electric field generated by the target, a reference electric field applicator configured to apply an electric field based on a reference signal with a known signal level to the electro-optic crystal, a light receiver configured to receive light emitted from the electro-optic crystal and to convert the received light into an electric signal, and a separation corrector configured to separate the electric signal into a measurement signal based on the electric field generated by the target and the reference signal and to correct a signal level of the measurement signal on the basis of the signal level of the separated reference signal.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: January 30, 2024
    Assignees: Yokogawa Electric Corporation, Hosei University
    Inventors: Yoshinori Matsumoto, Hiroaki Tanaka, Jun Katsuyama, Mitsuru Shinagawa
  • Patent number: 11886018
    Abstract: A fiber optic connector that includes a connector body comprising a ferrule retaining portion, a pusher engagement portion and a body cable passage extending through the pusher engagement portion and the ferrule retaining portion. The connector includes a ferrule assembly structurally configured to be retained by the ferrule retaining portion with an optical fiber bore of the ferrule assembly in alignment with the body cable passage. The connector includes a pusher structurally configured to axially engage the pusher engagement portion with a pusher cable passage in alignment with the body cable passage, and a collapsing cantilevered gasket structurally configured to form an axially compressed sealing interface between the connector body and the pusher and an omnidirectionally compressed sealing interface between the gasket and a cable passing through a cable passage of the gasket.
    Type: Grant
    Filed: August 18, 2021
    Date of Patent: January 30, 2024
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Michael De Jong, Wolf Peter Kluwe, Andrey Nikolayevich Levandovskiy, Daniel Leyva, Jr.
  • Patent number: 11880067
    Abstract: In an example, an integrated optical circuit (IOC) includes a first substrate formed of a first material and a first waveguide formed of a second material and positioned on the first substrate. The first waveguide includes a plurality of branches and is configured to polarize light beams that propagate through the first waveguide. The IOC further includes a second substrate formed of a third material, the second substrate coupled to or positioned on the first substrate. The IOC further includes a plurality of straight waveguides formed in the second substrate, each of the plurality of straight waveguides optically coupled to a respective branch of the plurality of branches of the first waveguide. The IOC further includes a plurality of electrodes positioned proximate to the plurality of straight waveguides, the plurality of electrodes configured to modulate the phase of light beams that propagate through the plurality of straight waveguides.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: January 23, 2024
    Assignee: Honeywell International Inc.
    Inventors: Jeffrey Earl Lewis, Matthew Wade Puckett, Neil A. Krueger, Chellappan Narayanan