Patents Examined by Kevin Bernatz
  • Patent number: 8871368
    Abstract: A perpendicular magnetic recording medium with SNR improved by reducing noise due to an auxiliary recording layer so that a higher recording density can be achieved. The perpendicular magnetic recording medium 100 includes a base, at least a magnetic recording layer 122 having a granular structure in which a non-magnetic grain boundary portion is formed between crystal particles grown in a columnar shape; a non-magnetic split layer 124 disposed on the magnetic recording layer 122 and containing Ru and oxygen; and an auxiliary recording layer 126 that is disposed on the split layer 124 and that is magnetically approximately continuous in an in-plane direction of a main surface of the base 110.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 28, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Takahiro Onoue, Teiichiro Umezawa, Toshiaki Tachibana, Masafumi Ishiyama
  • Patent number: 8871367
    Abstract: A perpendicular magnetic recording medium includes at least a soft-magnetic underlayer, a non-magnetic underlayer, a ferromagnetic intermediate layer, a non-magnetic intermediate layer, and a perpendicular magnetic recording layer sequentially stacked on a non-magnetic substrate. In an embodiment, the ferromagnetic intermediate layer is formed of a CoCr based alloy, a product Bs·t of a saturation magnetic flux density and film thickness of the ferromagnetic intermediate layer is within a range of 0.15 to 3.6 T·nm, and the non-magnetic intermediate layer has a film thickness of 3 nm or more.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: October 28, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hisato Kato
  • Patent number: 8865326
    Abstract: A layered ferromagnetic structure is composed of a first ferromagnetic layer positioned over a substrate; a second ferromagnetic layer positioned over the first ferromagnetic layer; and a first non-magnetic layer placed between the first and second ferromagnetic layers. The top surface of the first ferromagnetic layer is in contact with the first non-magnetic layer. The first ferromagnetic layer includes a first orientation control buffer that exhibits an effect of enhancing crystalline orientation of a film formed thereon.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: October 21, 2014
    Assignee: NEC Corporation
    Inventors: Yoshiyuki Fukumoto, Chuuji Igarashi
  • Patent number: 8852761
    Abstract: Provided is a magnetic anisotropy multilayer including a plurality of CoFeSiB/Pt layers used in a magnetic random access memory. The magnetic anisotropy multilayer includes a first Pt/CoFeSiB layer, and a second Pt/CoFeSiB layer formed on the first Pt/CoFeSiB layer.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: October 7, 2014
    Assignee: Korea University Foundation
    Inventors: Young Keun Kim, You-Song Kim, Byong-Sun Chun, Seung-Youb Han, Jang-Roh Rhee
  • Patent number: 8852760
    Abstract: A boron or boron containing dusting layer such as CoB or FeB is formed along one or both of top and bottom surfaces of a free layer at interfaces with a tunnel barrier layer and capping layer to improve thermal stability while maintaining other magnetic properties of a MTJ stack. Each dusting layer has a thickness from 0.2 to 20 Angstroms and may be used as deposited, or at temperatures up to 400° C. or higher, or following a subsequent anneal at 400° C. or higher. The free layer may be a single layer of CoFe, Co, CoFeB or CoFeNiB, or may include a non-magnetic insertion layer. The resulting MTJ is suitable for STT-MRAM memory elements or spintronic devices. Perpendicular magnetic anisotropy is maintained in the free layer at temperatures up to 400° C. or higher. Ku enhancement is achieved and the retention time of a memory cell for STT-MRAM designs is increased.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: October 7, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yu-Jen Wang, Witold Kula, Ru-Ying Tong, Guenole Jan
  • Patent number: 8846216
    Abstract: A method for producing a cast metal piece and a cast metal piece are provided. An information element includes at least one piece of information. The information element is produced from a magnetizable material and the information is deposited n the magnetizable material and is cast into the information element during casting of the price, the casting temperature being above the Curie temperature of the magnetizable material of the information element.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: September 30, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Richard Matz, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 8842388
    Abstract: Embodiments of the present invention provide a perpendicular magnetic recording head including a coil having small resistance. According to one embodiment, a nonmagnetic insulating layer formed on a main magnetic pole and a magnetic yoke are etched to form a recessed portion. The thickness of a conductive layer is increased by the depth of the recessed portion in a process for forming the conductive layer of the upper coil on the recessed portion to reduce resistance of the coil. Simultaneously with the formation of the recessed portion, a part of a second layer of a connection tab is removed. Simultaneously with the formation of the conductive layer of the upper coil, a space in which the part of the second layer of the connection tab is removed is filled with the same material as that of the conductive layer to further reduce the resistance of the entire coil.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: September 23, 2014
    Assignee: HGST Netherlands BV
    Inventors: Atsushi Kato, Ichiro Oodake, Gen Oikawa, Masahiko Soga
  • Patent number: 8841007
    Abstract: Various magnetic stack embodiments may be constructed with a soft magnetic underlayer (SUL) having a first thickness disposed between a substrate and a magnetic recording layer. A heatsink may have a second thickness and be disposed between the SUL and the magnetic recording layer. The first and second thicknesses may each be tuned to provide predetermined thermal conductivity and magnetic permeability throughout the data media.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: September 23, 2014
    Assignee: Seagate Technology LLC
    Inventors: Kai-Chieh Chang, Yinfong Ding, Ganping Ju, Timothy Klemmer, Yukiko Kubota, Thomas P. Nolan, Yingguo Peng, Jan-Ulrich Thiele, Qihong Wu, Xiaobin Zhu
  • Patent number: 8841006
    Abstract: The present invention relates to a magnetic tunnel junction device and a manufacturing method thereof. The magnetic tunnel junction device includes: i) a first magnetic layer including a compound having a chemical formula of (A100-xBx)100-yCy; ii) an insulating layer deposited on the first magnetic layer; and iii) a second magnetic layer deposited on the insulating layer and including a compound having a chemical formula of (A100-xBx)100-yCy. The first and second magnetic layers have perpendicular magnetic anisotropy, A and B are respectively metal elements, and C is at least one amorphizing element selected from a group consisting of boron (B), carbon (C), tantalum (Ta), and hafnium (Hf).
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: September 23, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Gyung-Min Choi, Byoung Chul Min, Kyung Ho Shin
  • Patent number: 8835014
    Abstract: The invention described herein relates to a therapeutic, moisturizing coating composition for elastomeric articles which is applied directly onto the skin-contacting surface of the article as part of the manufacturing process. The coating composition is thermally stable and subsequently hydrates when contacted with a moisturized skin surface to convert into a liquid “lotion” form during wearing of the article. The coating composition provides therapeutic benefits to the wearer's skin as a result of wearing the article, such as improved skin moisturization, softness of feel, improved skin elasticity and firmness, and reduced redness and irritation. The invention is particularly useful in medical gloves, including examination and surgical gloves.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: September 16, 2014
    Assignee: Allegiance Corporation
    Inventors: Shiping Wang, Yun-Siung Tony Yeh, James Owens, Wei Cheong Wong
  • Patent number: 8830735
    Abstract: A magnetic memory includes: a magnetization fixed layer having perpendicular magnetic anisotropy, a magnetization direction of the magnetization fixed layer being fixed; an interlayer dielectric; an underlayer formed on upper faces of the magnetization fixed layer and the interlayer dielectric; and a data recording layer formed on an upper face of the underlayer and having perpendicular magnetic anisotropy. The underlayer includes: a first magnetic underlayer; and a non-magnetic underlayer formed on the first magnetic underlayer. The first magnetic underlayer is formed with such a thickness that the first magnetic underlayer does not exhibit in-plane magnetic anisotropy in a portion of the first magnetic underlayer formed on the interlayer dielectric.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: September 9, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Eiji Kariyada, Katsumi Suemitsu, Hironobu Tanigawa, Kaoru Mori, Tetsuhiro Suzuki, Kiyokazu Nagahara, Yasuaki Ozaki, Norikazu Ohshima
  • Patent number: 8828565
    Abstract: Disclosed is a lubricant composition comprising at least one kind of compound represented by following formula (1): where X represents a cyclic group that may be substituted; Y represents a divalent or higher-valent linking group having at least one polar group and having no aromatic cyclic group; p1 represents an integer of 1 to 4; p2, p3, and p4 each represent an integer of 0 to 4; q represents an integer of 0 to 30; n represents an integer of 1 to 10; s represents an integer of 1 to 4; and t represents an integer of 2 to 10.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: September 9, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Hiroki Sugiura, Masayuki Harada, Ken Kawata, Akiko Hattori, Atsushi Tatsugawa
  • Patent number: 8830624
    Abstract: A write pole structure disclosed herein includes a write pole layer, a bottom layer including a beveled surface, and a cap layer between the write pole layer and the bottom layer, wherein the cap layer is made of a material with hardness less than hardness of the write pole layer.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: September 9, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yong Luo, Zhe Shen, Dong Lin, Huaqing Yin
  • Patent number: 8822047
    Abstract: A method for making a master mold that is used in the nanoimprinting process to make patterned-media disks with patterned data islands uses guided self-assembly of a block copolymer into its components. Conventional or e-beam lithography is used to first form a pattern of generally radial stripes on a substrate, with the stripes being grouped into annular zones or bands. A block copolymer material is then deposited on the pattern, resulting in guided self-assembly of the block copolymer into its components to multiply the generally radial stripes into generally radial lines. Various methods, including conventional lithography, guided self-assembly of a second block copolymer, and e-beam lithography, are then used to form concentric rings over the generally radial lines. After etching and resist removal, the master mold has a pattern of either pillars or holes, depending on the method used.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: September 2, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Elizabeth Ann Dobisz, Ricardo Ruiz
  • Patent number: 8822046
    Abstract: A stack having a seed layer structure with a first part having a first cross-track width and a free layer deposited over the seed layer structure and with a second cross-track width, wherein the first cross-track width is greater than the second cross-track width. In one implementation, the seed layer structure further comprises an antiferromagnetic (AFM) layer and a synthetic antiferromagnetic (SAF) layer. In one alternate implementation, the cross-track width of the seed layer structure is substantially equal to the combined cross-track width of the free layer and cross-track width of two permanent magnets.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: September 2, 2014
    Assignee: Seagate Technology LLC
    Inventors: Eric Walter Singleton, Jae-Young Yi, Konstantin Nikolaev, Victor Boris Sapozhnikov, Stacey Christine Wakeham, Shaun Eric McKinlay
  • Patent number: 8810962
    Abstract: A read/write head is disclosed wherein a non-magnetic layer made of a metal is inserted in the read head on a side opposite to the S1 shield with respect to the sensor. The non-magnetic layer is preferably Cu and is recessed from the ABS to prevent corrosion. A preferred design has a 1 to 5 micron thick non-magnetic insertion layer that extends a distance of 3 to 100 microns along a plane that is perpendicular to the ABS. RG efficiency is enhanced significantly and RG gamma ratio is improved to 1.0 so that a smaller difference in RG, WG, and min-fly point can be achieved at touchdown detection and in normal read/write operations. These results lead to an optimal dynamic performance for a given spacing target and enhanced read gap protrusion at a given heater power. S1/S2A thickness can be independently optimized for magnetic performance consideration only.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: August 19, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Yan Wu, Kowang Liu
  • Patent number: 8795856
    Abstract: A nickel thin film is formed, for example, to a thickness of 2 nm or more on a polyethylene naphthalate substrate by a vacuum evaporation method. A magnetoresistance effect element using ferromagnetic nano-junction is comprised by using two laminates each comprising a nickel thin film formed on a polyethylene naphthalate substrate, and joining these two laminates so that the nickel thin films cross to each other in such a manner that edges of the nickel thin films face each other.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: August 5, 2014
    Assignees: National University Corporation, Hokkaido University
    Inventors: Hideo Kaiju, Manabu Ishimaru, Yoshihiko Hirotsu, Akito Ono, Akira Ishibashi
  • Patent number: 8790798
    Abstract: A magnetoresistive element (and method of fabricating the magnetoresistive element) that includes a free ferromagnetic layer comprising a first reversible magnetization direction directed substantially perpendicular to a film surface, a pinned ferromagnetic layer comprising a second fixed magnetization direction directed substantially perpendicular to the film surface, and a nonmagnetic insulating tunnel barrier layer disposed between the free ferromagnetic layer and the pinned ferromagnetic layer, wherein the free ferromagnetic layer, the tunnel barrier layer, and the pinned ferromagnetic layer have a coherent body-centered cubic (bcc) structure with a (001) plane oriented, and a bidirectional spin-polarized current passing through the coherent structure in a direction perpendicular to the film surface reverses the magnetization direction of the free ferromagnetic layer.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: July 29, 2014
    Inventor: Alexander Mikhailovich Shukh
  • Patent number: 8792206
    Abstract: A method for forming a transducing head having a magnetic writer includes forming a pedestal adjacent to a writer pole and a gap layer, depositing a front shield on the pedestal, etching the front shield, and depositing a backfill layer upon the front shield after etching. The front shield has a controlled thickness upon etching.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: July 29, 2014
    Assignee: Seagate Technology LLC
    Inventor: Paul Edward Anderson
  • Patent number: 8790797
    Abstract: The spin injection source comprises a nonmagnetic conductor, an MgO film, and a ferromagnet, and injects spin from the ferromagnet to the nonmagnetic conductor. The MgO film is annealed at temperature of between 300° C. and 500° C. The annealing duration is preferably between 30 and 60 minutes. By annealing, the oxygen vacancies increases and the electric resistance of MgO film decreases. And thus the spin injection efficiency in the spin injection source improves.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 29, 2014
    Assignee: RIKEN
    Inventors: Yasuhiro Fukuma, Yoshichika Otani