Patents Examined by Kevin Bernatz
  • Patent number: 9082534
    Abstract: A material composition for forming a free layer in a STT structure (such as a single or dual MTJ structure) can include CoxFeyMz, where M is a non-magnetic material that assists in forming a good crystalline orientation and matching between the free layer and an MgO interface. The material M preferably either does not segregate to the MgO interface or, if it does segregate to the MgO interface, it does not significantly reduce the PMA of the free layer. The free layer can further include a connecting layer, where M is attracted to the insertion layer during annealing. The free layer can include a graded composition of CoxFeyMz, where z changes within the free layer.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: July 14, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Roman Chepulskyy, Dmytro Apalkov
  • Patent number: 9064519
    Abstract: A soft magnetic under layer has a low antiferromagnetic coupling force and a high saturation magnetic flux density. The soft magnetic under layer includes two soft magnetic layers and a spacer layer. The soft magnetic layers are expressed by a composition formula as (Fe100-XCoX)100-Y-MY by atomic ratio, wherein 15?X?30, 10?Y?30, and an element M is at least one element selected from a group of Ta, Ti, Zr, Nb, Cr, and B; are composed of residual incidental impurities; and each have a thickness of 10 to 50 nm. The spacer layer is composed of one element selected from a group of Ru, Cr, Cu, Re, and Rh and has a thickness of 0.10 to 0.50 nm. The soft magnetic layers are antiferromagnetically coupled through the spacer layer inserted therebetween. An antiferromagnetic coupling force between the soft magnetic layers is 100 to 4,000 A/m.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: June 23, 2015
    Assignee: HITACHI METALS, LTD.
    Inventors: Jun Fukuoka, Kazuya Saitoh
  • Patent number: 9053733
    Abstract: According to one embodiment, a magnetic recording medium includes a data region and a servo region adjacent to the data region and including a magnetic recording layer, the magnetic recording layer including first and second patterned regions adjacent to each other, the first patterned region including a first nonmagnetic matrix and first magnetic particles dispersed in the first nonmagnetic matrix and having magnetization oriented in a first direction, the second patterned region includes a second nonmagnetic matrix and second magnetic particles dispersed in the second nonmagnetic matrix and having magnetization oriented in a second direction opposite to the first direction, sizes of the first magnetic particles being smaller than sizes of the second magnetic particles.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: June 9, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Hieda
  • Patent number: 9053713
    Abstract: A sub-structure, suitable for use as a hot seed on which to form a perpendicular magnetic main write pole, is described. It is made up of a buffer layer of atomic layer deposited alumina on which there are one or more seed layers having a body-centered cubic (bcc) crystal structure. Finally, the high coercivity magnetic film lies on the seed layer(s). It is critical that the high coercivity magnetic film be deposited at a very low deposition rate (around 1 Angstrom per second).
    Type: Grant
    Filed: October 14, 2012
    Date of Patent: June 9, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Shengyuan Wang, Kunliang Zhang, Min Li
  • Patent number: 9051202
    Abstract: A disk roll includes a shaft, and a plurality of disks that are fitted to the shaft, the plurality of disks fitted having been fired, having a density of more than 1.20 g/cm3 and 1.50 g/cm3 or less, and including 20 to 50 wt % of ceramic wool, 5 to 30 wt % of kibushi clay, 2 to 20 wt % of bentonite, and 20 to 45 wt % of a filler, the filler being selected from mica, alumina, wollastonite, cordierite, and calcined kaolin.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: June 9, 2015
    Assignee: NICHIAS CORPORATION
    Inventors: Kazuhisa Watanabe, Tetsuya Mihara, Taichi Shiratori
  • Patent number: 9051200
    Abstract: A disk roll base material includes 20 to 38 wt % of alumina silicate wool that include 40 to 60 wt % of alumina and 40 to 60 wt % of silica, and have a content of shots having a dimension of 45 ?m or more of 5 wt % or less, 10 to 30 wt % of kibushi clay, 2 to 20 wt % of bentonite, and 20 to 40 wt % of mica.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: June 9, 2015
    Assignee: NICHIAS CORPORATION
    Inventors: Kazuhisa Watanabe, Masaaki Nakayama, Osamu Horiuchi
  • Patent number: 9045348
    Abstract: The present disclosure relates to a protective layer composition that includes TixSiyA, where A is Cm, CmNl, OnCm, or OnCmNl and x, y, l, m, and n are positive integers. In one implementation, the protective layer composition has a ratio of x over (x+y) in the range of between about 0.1 and about 1.0. In another implementation, the protective layer composition has a ratio of x over (x+y) in the range of between about 0.3 and about 0.9. In yet another implementation, the protective layer composition has a ratio of x over (x+y) that is about 0.6. The protective layer composition may be amorphous. Also, the protective layer composition may include an atomic percentage of Ti that is less than about 20%. In one implementation of the protective layer composition, x is 2, y is 1, and A is C3.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 2, 2015
    Assignee: HGST NETHERLANDS B.V.
    Inventor: Franck Dreyfus Rose Dit Rose
  • Patent number: 9047906
    Abstract: The embodiments disclose a dual-layer magnetic recording structure including a top magnetic layer etched to remove patterned portions of the top magnetic layer and a bottom magnetic layer including portions with altered magnetic properties of molecules to reduce net magnetic moments and including portions of unaltered magnetic properties exchange-coupled through the top magnetic layer.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 2, 2015
    Assignee: Seagate Technology, LLC
    Inventor: Zhaohui Fan
  • Patent number: 9040139
    Abstract: The present invention relates to a process for producing a base material for disks of disk rolls, in which the disk roll contains a rotating shaft and a plurality of the disks fitted on the rotating shaft by insertion whereby the outer peripheral surface of the disks serves as a conveying surface, in which the process contains molding a slurry raw material containing inorganic fibers, an inorganic filler having an aspect ratio of from 1 to 25 and an inorganic binder into a plate shape; and drying the molded plate.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: May 26, 2015
    Assignee: NICHIAS CORPORATION
    Inventors: Kazuhisa Watanabe, Kouji Iwata, Masaaki Nakayama
  • Patent number: 9040178
    Abstract: A TMR sensor that includes a free layer having at least one B-containing (BC) layer made of CoFeB, CoFeBM, CoB, COBM, or CoBLM, and a plurality of non-B containing (NBC) layers made of CoFe, CoFeM, or CoFeLM is disclosed where L and M are one of Ni, Ta, Ti, W, Zr, Hf, Tb, or Nb. One embodiment is represented by (NBC/BC)n where n?2. A second embodiment is represented by (NBC/BC)n/NBC where n?1. In every embodiment, a NBC layer contacts the tunnel barrier and NBC layers each with a thickness from 2 to 8 Angstroms are formed in alternating fashion with one or more BC layers each 10 to 80 Angstroms thick. Total free layer thickness is <100 Angstroms. The free layer configuration described herein enables a significant noise reduction (SNR enhancement) while realizing a high TMR ratio, low magnetostriction, low RA, and low Hc values.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 26, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Patent number: 9034491
    Abstract: A magnetic element may generally be configured at least with a magnetic stack having a multilayer barrier structure disposed between first and second ferromagnetic layers. The multilayer barrier structure can have a binary compound layer disposed between first and second alloy layers with the binary compound having a metal element and a second element where at least one alloy layer has the metal element and a third element dissimilar from the second element.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 19, 2015
    Assignee: Seagate Technology LLC
    Inventors: Vijay Karthik Sankar, Mark William Covington
  • Patent number: 9036308
    Abstract: Various embodiments may be generally directed to a magnetic sensor constructed with a decoupling layer that has a predetermined first morphology. A magnetic free layer can be deposited contactingly adjacent to the decoupling layer with the magnetic free layer configured to have at least a first sub-layer having a predetermined second morphology.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: May 19, 2015
    Assignee: Seagate Technology LLC
    Inventors: Mark William Covington, Mark Thomas Kief, Wonjoon Jung
  • Patent number: 9034492
    Abstract: Systems and methods for controlling the damping of magnetic media for heat assisted magnetic recording are provided. One such system includes a heat sink layer, a growth layer on the heat sink layer, a magnetic recording layer on the growth layer, where the growth layer is configured to facilitate a growth of a preselected crystalline structure of the magnetic recording layer, and a capping magnetic recording layer on the magnetic recording layer, the capping recording layer including a first material configured to increase a damping constant of the capping recording layer to a first preselected level.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: May 19, 2015
    Assignee: WD Media, LLC
    Inventors: Michael L. Mallary, Gerardo A. Bertero, Kumar Srinivasan
  • Patent number: 9028985
    Abstract: A magnetic recording (PMR) disk structure is described. The PMR disk structure may include a magnetic capping layer being substantially free of an oxide, an upper magnetic layer with an oxide content disposed directly below and in contact with the magnetic capping layer, and an upper exchange coupling layer disposed below the upper magnetic layer.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 12, 2015
    Assignee: WD Media, LLC
    Inventors: Mrugesh Desai, Kyongha Kang, Jian Zhou, B. Ramamurthy Acharya
  • Patent number: 9028984
    Abstract: A perpendicular magnetic recording medium includes a nonmagnetic substrate, and a soft magnetic layer, a first orientation control layer, a second orientation control layer, a nonmagnetic intermediate layer, a magnetic recording layer, and a protective layer layered sequentially on the nonmagnetic substrate. The first orientation control layer includes a thin film having a face-centered cubic (fcc) structure. The magnetic recording layer includes a thin film layer having ferromagnetic crystal grains and nonmagnetic grain boundaries surrounding the ferromagnetic crystal grains, the ferromagnetic crystal grains including a CoPt alloy having ferromagnetic properties, and the nonmagnetic grain boundaries including an oxide or a nitride. The nonmagnetic intermediate layer includes a thin film containing Ru.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: May 12, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Yasushi Sakai, Shunji Takenoiri
  • Patent number: 9017831
    Abstract: A thin-film magnetic oscillation element includes a pinned magnetic layer, a free magnetic layer, a nonmagnetic spacer layer provided between the pinned magnetic layer and the free magnetic layer, and a pair of electrodes, in which the easy axis of magnetization of the pinned magnetic layer lies in an in-plane direction of the plane of the pinned magnetic layer, and the easy axis of magnetization of the free magnetic layer lies in a direction normal to the plane of the free magnetic layer. Preferably, the relationship between the saturation magnetization Ms and the magnetic anisotropy field Ha of the free magnetic layer satisfies 1.257 Ms<Ha<12.57 Ms. More preferably, the free magnetic layer is composed of an alloy or a stacked film containing at least one element selected from Co, Ni, Fe, and B.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 28, 2015
    Assignee: TDK Corporation
    Inventors: Katsuyuki Nakada, Takahiro Suwa, Kuniyasu Ito, Yuji Kakinuma, Masato Takahashi
  • Patent number: 9017832
    Abstract: Various embodiments may be generally directed to a magnetic element capable of optimized magnetoresistive data reading. Such a magnetic element may be configured at least with a magnetoresistive stack that has an electrode lamination having at least a transition metal layer disposed between a magnetically free layer of the magnetoresistive stack and an electrode layer of the electrode lamination.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: April 28, 2015
    Assignee: Seagate Technology LLC
    Inventors: Eric Walter Singleton, Liwen Tan, Jae-Young Yi
  • Patent number: 9016092
    Abstract: A glass for a magnetic recording medium substrate permitting the realization of a magnetic recording medium substrate affording good chemical durability and having an extremely flat surface, a magnetic recording medium substrate comprised of this glass, a magnetic recording medium equipped with this substrate, and methods of manufacturing the same. The glass is an oxide glass not including As or F.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: April 28, 2015
    Assignee: Hoya Corporation
    Inventors: Yoichi Hachitani, Kinobu Osakabe
  • Patent number: 9007728
    Abstract: A method comprises providing a magnetic element including a free layer, a pinned layer, a nonmagnetic spacer layer between the free and pinned layers, and a pinning layer adjacent the pinned layer. The free layer is biased in a first direction. The pinned layer has a first layer having a first magnetization, a second layer having a second magnetization, and a nonmagnetic layer between the first and second layer. The first magnetization is pinned parallel to a second direction substantially perpendicular to the first direction and substantially perpendicular to the ABS. The second magnetization is antiparallel to the second direction. The pinning layer is oriented along the second direction. The method further comprises providing a hard bias structure having a hard bias magnetization, initializing the hard bias magnetization along the second direction, performing at least one thermal treatment, and resetting the hard bias magnetization substantially along the first direction.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: April 14, 2015
    Assignee: Western Digital (Fremont), LLC
    Inventors: Feng Liu, Prakash Mani, Christian Kaiser, Laurence L. Chen
  • Patent number: 8980447
    Abstract: A magnetic recording medium is disclosed. The magnetic recording medium includes at least a disc-shaped non-magnetic substrate having a hole at a center, a soft magnetic underlying layer, and a magnetic recording layer. Relative permeability of the soft magnetic underlying layer under a magnetic field having one of the frequencies 100 MHz to 700 MHz increases gradually from a disc outer circumference to a disc inner circumference and a characteristic frequency of the relative permeability increases gradually from the disc inner circumference to the disc outer circumference.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: March 17, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Shinji Uchida