Patents Examined by Kevin Bernatz
  • Patent number: 9437812
    Abstract: A method of fabricating a TMR sensor that includes a free layer having at least one B-containing (BC) layer made of CoFeB, CoFeBM, CoB, CoBM, or CoBLM, and a plurality of non-B containing (NBC) layers made of CoFe, CoFeM, or CoFeLM is disclosed where L and M are one of Ni, Ta, Ti, W, Zr, Hf, Tb, or Nb. In every embodiment, a NBC layer contacts the tunnel barrier and NBC layers each with a thickness from 2 to 8 Angstroms are formed in alternating fashion with one or more BC layers each 10 to 80 Angstroms thick. Total free layer thickness is <100 Angstroms. The TMR sensor may be annealed with a one step or two step process. The free layer configuration described herein enables a significant noise reduction (SNR enhancement) while realizing a high TMR ratio, low magnetostriction, low RA, and low Hc values.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: September 6, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Yu-Chen Zhou, Min Li, Kunliang Zhang
  • Patent number: 9409809
    Abstract: A method for manufacturing a glass blank for magnetic disk and a method for manufacturing a glass substrate for magnetic disk are provided which are capable of producing a glass blank for magnetic disk having a good surface waviness by press forming. The method includes a forming process of press-forming a lump of molten glass using a pair of dies, wherein in the forming process, press forming is performed using thermally equalizing means for reducing a difference in temperature in the press forming surface of the die during pressing of the molten glass.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: August 9, 2016
    Assignee: HOYA CORPORATION
    Inventors: Hideki Isono, Hidekazu Tanino, Akira Murakami, Takashi Sato, Masamune Sato
  • Patent number: 9406327
    Abstract: In one embodiment, a magnetic storage device includes at least one microwave assisted magnetic recording (MAMR) head, each MAMR head including a spin torque oscillator (STO), a magnetic recording medium, a drive mechanism for passing the magnetic medium over the at least one MAMR head, and a controller electrically coupled to the at least one MAMR head for controlling operation of the at least one MAMR head, wherein the magnetic recording medium includes a recording layer positioned directly or indirectly above a substrate and an assist layer positioned above the recording layer, wherein the recording layer includes at least Co, Pt, and an oxide or oxygen, wherein the assist layer is positioned closer to the at least one MAMR head and includes at least Co and Pt, and wherein at least a portion of the recording layer has a smaller anisotropic magnetic field than the assist layer.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: August 2, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Tatsuya Hinoue, Ichiro Tamai, Hiroaki Nemoto
  • Patent number: 9382496
    Abstract: Lubricants having perfluoropolyether side chains which have a high thermal stability and high shear modulus.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: July 5, 2016
    Assignee: Western Digital Technologies, Inc.
    Inventors: Bernhard Knigge, Mousumi Mani Biswas
  • Patent number: 9384772
    Abstract: A magnetic recording medium includes a substrate, a magnetic layer including an alloy having a L10 type crystal structure as a main component thereof, and a plurality of underlayers arranged between the substrate and the magnetic layer. The plurality of underlayers include a first underlayer including two or more elements selected from a group consisting of Ta, Nb, Ti, and V, and one or more elements selected from a group consisting of W and Mo, and a second underlayer including MgO.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: July 5, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Lei Zhang, Tetsuya Kanbe, Yuji Murakami, Kazuya Niwa
  • Patent number: 9368176
    Abstract: One embodiment of a magnetoresistive element comprises: a free ferromagnetic layer comprising a reversible magnetization direction directed substantially perpendicular to a film surface in its equilibrium state; a pinned ferromagnetic layer comprising a fixed magnetization direction directed substantially perpendicular to the film surface; a nonmagnetic tunnel barrier layer disposed between the free ferromagnetic layer and the pinned ferromagnetic layer and having a direct contact with the free and pinned ferromagnetic layers; a first nonmagnetic conductive layer disposed adjacent to and having a direct contact with a side of a free ferromagnetic layer opposite to the tunnel barrier layer; and a second nonmagnetic conductive layer disposed adjacent to a side of the pinned ferromagnetic layer opposite to the tunnel barrier layer, wherein the free ferromagnetic layer and the pinned ferromagnetic layers comprise at least one element selected from the group consisting of Fe, Co, and Ni, at least one element selec
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: June 14, 2016
    Inventor: Alexander Mikhailovich Shukh
  • Patent number: 9361913
    Abstract: Apparatuses and methods of recording read heads with a multi-layer anti-ferromagnetic (AFM) layer are provided. The AFM layer has gradient Manganese (Mn) compositions. A multi-layer AFM layer comprises a plurality of sub-layers having different Mn compositions. An upper sub-layer has a higher Mn composition than an lower sub-layer. Different types of gases may be used to deposit each sub-layer and the flow of each gas may be adjusted.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: June 7, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yuankai Zheng, Qunwen Leng
  • Patent number: 9355669
    Abstract: A perpendicularly magnetized thin film structure and a method of manufacturing the perpendicularly magnetized thin film structure are provided. The perpendicularly magnetized thin film structure includes i) a base layer, ii) a magnetic layer located on the base layer and having an L10-crystalline structure, and iii) a metal oxide layer located on the magnetic layer.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: May 31, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Gyung Min Choi, Byoung Chul Min, Kyung Ho Shin
  • Patent number: 9349392
    Abstract: Various embodiments described herein provide for substrate structures including uniform plating seed layers, and that provide favorable adhesion on dielectric substrate layers. According to some embodiments, a methods for forming a magnetic recording pole is provided comprising: forming an insulator layer; forming a trench in the insulator layer; forming an amorphous seed layer over the insulator layer; forming an adhesion layer over the amorphous seed layer, the adhesion layer comprising a physical vapor deposited (PVD) noble metal; forming a plating seed layer over the adhesion layer, the plating seed layer comprising chemical vapor deposited (CVD) Ru; and forming a magnetic material layer over the plating seed layer.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: May 24, 2016
    Assignee: Western Digital (Fremont), LLC
    Inventors: Wanxue Zeng, Weimin Si, Ying Hong, Lieping Zhong
  • Patent number: 9343096
    Abstract: According to one embodiment, a perpendicular magnetic recording medium is provided, which includes a non-magnetic granular underlayer formed on a substrate and containing metal grains of a first metal and a grain boundary layer surrounding the metal grains, each metal grain including a projection projecting from the boundary layer and a bottom portion embedded in the grain boundary layer, and a contact angle of the edge of the projection to the surface of the grain boundary layer being 45° to 85°, a non-magnetic intermediate layer formed on a surface of each projection and a magnetic recording layer having a projection pattern formed on the basis of a pattern of the projections in the non-magnetic intermediate layer via the non-magnetic intermediate layer.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: May 17, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira Watanabe, Takeshi Iwasaki, Kazutaka Takizawa, Kaori Kimura
  • Patent number: 9336937
    Abstract: To realize a spintronics device with high performance, it is an object of the present invention to provide a Co2Fe-based Heusler alloy having a spin polarization larger than 0.65, and a high performance spintronics devices using the same. A Co2Fe(GaxGe1-x) Heusler alloy shows a spin polarization higher than 0.65 by a PCAR method in a region of 0.25<x<0.60 and it has a Curie temperature as high as 1288K. A CPP-GMR device that uses the Co2Fe(GaxGe1-x) Heusler alloy as an electrode exhibits the world's highest MR ratio, an STO device exhibits high output, and an NLSV device exhibits a high spin signal.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: May 10, 2016
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yukiko Takahashi, Srinivasan Ananthakrishnan, Varaprasad Bollapragada, Rajanikanth Ammanabrolu, Jaivardhan Sinha, Masamitsu Hayashi, Takao Furubayashi, Shinya Kasai, Shigeyuki Hirayama, Seiji Mitani, Kazuhiro Hono
  • Patent number: 9331271
    Abstract: A STT-RAM MTJ is disclosed with a MgO tunnel barrier formed by natural oxidation and containing an oxygen surfactant layer to form a more uniform MgO layer and lower breakdown distribution percent. A CoFeB/NCC/CoFeB composite free layer with a middle nanocurrent channel layer minimizes Jc0 while enabling thermal stability, write voltage, read voltage, and Hc values that satisfy 64 Mb design requirements. The NCC layer has RM grains in an insulator matrix where R is Co, Fe, or Ni, and M is a metal such as Si or Al. NCC thickness is maintained around the minimum RM grain size to avoid RM granules not having sufficient diameter to bridge the distance between upper and lower CoFeB layers. A second NCC layer and third CoFeB layer may be included in the free layer or a second NCC layer may be inserted below the Ru capping layer.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 3, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Guangli Liu, Robert Beach, Witold Kula, Tai Min
  • Patent number: 9331123
    Abstract: A logic unit for security engines or content addressable memory including Magnetic Tunnel Junction (MTJ) elements connected in series to form a NAND-type string, where each MTJ element includes a storage layer and a sense layer having different anti-ferromagnetic materials respectively having higher and lower blocking temperatures. During write/program, the string is heated above the higher blocking temperature, and magnetic fields are used to store bit values of a confidential logical pattern in the storage layers. The string is then cooled to an intermediate temperature between the higher and lower blocking temperatures and the field lines turned off to store bit-bar (opposite) values in the sense layers. During a pre-compare operation, the MTJ elements are heated to the intermediate temperature, and an input logical pattern is stored in the sense layers. During a compare operation, with the field lines off, a read current is passed through the string and measured.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: May 3, 2016
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Avi Strum
  • Patent number: 9324353
    Abstract: In one embodiment, a magnetic media suitable for HAMR recording includes a recording layer having first and second magnetic layers. The first magnetic layer has a first segregant between magnetic grains thereof, the first segregant being primarily C. Moreover, the second magnetic layer is formed above the first magnetic layer. The second magnetic layer has a second segregant between magnetic grains thereof, the second segregant being primarily C and a second component. Additional systems and methods are also described herein.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: April 26, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Oleksandr Mosendz, Simone Pisana, Dieter K. Weller
  • Patent number: 9324960
    Abstract: Novel semiconducting polymers have been formed via the electron-induced cross-linking of orthocarborane B10C2H2 and 1,4-diaminobenzene. The films were formed by co-condensation of the molecular precursors and 200 eV electron-induced cross-linking under ultra-high vacuum (UHV) conditions. Ultraviolet photoemission spectra show that the compound films display a shift of the valence band maximum from ˜4.3 eV below the Fermi level for pure boron carbide to ?1.7 eV below the Fermi level when diaminobenzene is added. The surface photovoltage effect decreases with decreasing B/N atomic ratio. A neutron detector comprises the polymer as the p-type semiconductor to be paired with an n-type semiconductor.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 26, 2016
    Assignee: QUANTUM DEVICES, LLC
    Inventors: Peter Dowben, Jeffry Kelber
  • Patent number: 9324938
    Abstract: Boron carbide polymers prepared from orthocarborane icosahedra cross-linked with a moiety A wherein A is selected from the group consisting of benzene, pyridine. 1,4-diaminobenzene and mixtures thereof give positive magnetoresistance effects of 30%-80% at room temperature. The novel polymers may be doped with transitional metals to improve electronic and spin performance. These polymers may be deposited by any of a variety of techniques, and may be used in a wide variety of devices including magnetic tunnel junctions, spin-memristors and non-local spin valves.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: April 26, 2016
    Assignee: UNIVERSITY OF NORTH TEXAS
    Inventors: Jeffry Kelber, Peter Dowben
  • Patent number: 9318140
    Abstract: A magnetic media having a novel cap layer that allows the cap layer having improved exchange coupling and reduced thickness. The cap layer is doped with a non-reactive element such as Ar, Kr, Xe, Ne or He preferably Ar. This doping reduces increases exchange coupling and reduces the dead layer, allowing the cap layer to be made thinner for reduced magnetic spacing and improved data recording performance.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 19, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Gunn Choe, Yoshihiro Ikeda
  • Patent number: 9318248
    Abstract: A spin valve element including parallelly or serially connected magnetic element groups, each magnetic element group having a plurality of magnetic elements that each include an intermediate layer of an insulating member or a nonmagnetic member sandwiched by a pair of ferromagnetic layers. The plurality of magnetic elements are further connected either in series or in parallel.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: April 19, 2016
    Assignee: III HOLDINGS 2, LLC
    Inventors: Haruo Kawakami, Yasushi Ogimoto, Eiki Adachi
  • Patent number: 9299379
    Abstract: Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: March 29, 2016
    Assignee: Seagate Technology LLC
    Inventors: Kaizhong Gao, Bin Lu, Bogdan Florin Valcu, Xiaoding Ma
  • Patent number: 9280996
    Abstract: An “all optical switching” (AOS) magnetic recording system, i.e., one that does not require a magnetic field to reverse the magnetization in the magnetic recording media, uses a FeMnPt L10 alloy as the magnetic media. A FeMnPt alloy, with appropriate amounts of Mn, will have high magneto-crystalline anisotropy, but also ferrimagnetic spin alignment for triggering AOS. The combination of high magneto-crystalline anisotropy and ferrimagnetic spin configuration enables the FeMnPt media to function as magnetic media whose magnetization can be switched solely by polarized laser pulses. The FeMnPt media for may be a single layer with or without any segregants. Alternatively, the FeMnPt media may be a multilayered recording layer comprising alternating layers of FePt and MnPt L10 ordered alloys. The segregant-free embodiments of the FeMnPt material may be patterned to form bit-patterned-media (BPM).
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: March 8, 2016
    Assignee: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Oleksandr Mosendz, Dieter K. Weller