Patents Examined by Khanh Tuan Nguyen
  • Patent number: 8951447
    Abstract: The optically pumped semiconductor according to the present invention is an optically pumped semiconductor that is a semiconductor of a perovskite oxide. The optically pumped semiconductor has a composition represented by a general formula: BaZr1-xMxO3-?, where M denotes at least one element selected from trivalent elements, x denotes a numerical value more than 0 but less than 0.8, and ? denotes an amount of oxygen deficiency that is a numerical value more than 0 but less than 1.5. The optically pumped semiconductor has a crystal system of a cubic, tetragonal, or orthorhombic crystal. When lattice constants of the crystal system are referred to as a, b, and c, provided that a?b?c, conditions that 0.41727 nm?a, b, c?0.42716 nm and a/c?0.98 are satisfied.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: February 10, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Noboru Taniguchi, Kenichi Tokuhiro, Takahiro Suzuki, Tomohiro Kuroha, Takaiki Nomura, Kazuhito Hatoh
  • Patent number: 8951446
    Abstract: Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: February 10, 2015
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Robert V. Fox, Rene Rodriguez, Joshua J. Pak, Chivin Sun
  • Patent number: 8945432
    Abstract: A conductive polymer composition comprising a conductive polymer in a solid polyelectrolyte.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: February 3, 2015
    Assignees: Cambridge Display Technology Limited, CDT Oxford Limited
    Inventors: Andrew Bruce Holmes, Mary J. McKiernan, Caroline Towns
  • Patent number: 8940195
    Abstract: A conductive paste includes a conductive powder, a metallic glass, and an organic vehicle. The metallic glass includes a first element, a second element having a higher absolute value of Gibbs free energy of oxide formation than the first element, and a third element having an absolute value of Gibbs free energy of oxide formation of about 1000 kJ/mol or less at a baking temperature and a eutectic temperature with the conductive powder of less than about 1000° C. An electronic device and a solar cell may include an electrode formed using the conductive paste.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Sung Lee, Se Yun Kim, Sang Soo Jee, Yong Nam Ham
  • Patent number: 8940189
    Abstract: The present invention relates to intensely colored and/or optically variable pigments which have a flake-form transparent or semitransparent electrically conductive core and at least one coloring dielectric layer surrounding the core, to a process for the preparation of such pigments, and to the use thereof.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: January 27, 2015
    Assignee: Merck Patent GmbH
    Inventors: Burkhard Krietsch, Matthias Kuntz, Reinhold Rueger
  • Patent number: 8940197
    Abstract: A process for preparing a palladium nanoparticle ink comprises reacting a reaction mixture comprising a palladium salt, a stabilizer, a reducing agent, and an optional solvent to directly form the palladium nanoparticle ink. During the formation of the palladium nanoparticle ink, the palladium nanoparticles are not isolated from the reaction mixture.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Xerox Corporation
    Inventors: Ping Liu, Yiliang Wu, Nan-Xing Hu, Anthony James Wigglesworth
  • Patent number: 8940196
    Abstract: A silicon-based shape memory alloy negative active material includes a silicon-based material precipitated on a Ni2Mn1-XZX shape memory alloy basic material. In the silicon-based shape memory alloy negative active material, X satisfies the relationship 0?X?1 and Z is one of Al, Ga, In, Sn, or Sb.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: January 27, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Byung-Joo Chung, Chun-Gyoo Lee
  • Patent number: 8940192
    Abstract: Provided is a method of producing carbon particles for an electrode, each containing particles of a metal capable of forming an alloy with lithium, being formed by an aggregation of numerous fine particles composed of carbon, and having a hollow open-cell structure in which cells among the fine particles form a plurality of interconnected pores. The method includes mixing together a monomer having a low compatibility with a polymer to be formed, an organic solvent having a low compatibility with the polymer to be formed, and particles of a metal capable of forming an alloy with lithium, to prepare a monomer-containing mixture; dispersing the monomer-containing mixture in an aqueous phase to prepare a suspension containing, dispersed therein, oil droplets of the monomer-containing mixture; polymerizing the oil droplets in the suspension to prepare resin particles; and curing the resin particles. The carbon particles find use for negative-electrode in lithium-ion secondary batteries.
    Type: Grant
    Filed: December 25, 2009
    Date of Patent: January 27, 2015
    Assignee: Sekisui Chemical Co., Ltd.
    Inventor: Takuya Toyokawa
  • Patent number: 8931114
    Abstract: A redox-active conductive polymer includes a charged tether. An interpenetrating network including such a conducting polymer can be switched between two states of diffusivity (porosity) by application of a voltage. Such a material can be useful in breathable protective clothing, controlled release, intelligent sensing/filtration, novel separation processes, nanomanufacturing, and other areas.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: January 13, 2015
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Martin H. Moore, Banahalli R. Ratna, Gusphyl Justin, Jawad Naciri
  • Patent number: 8932480
    Abstract: The present invention provides a LiCoO2-containing powder comprising LiCoO2 having a stoichiometric composition via heat treatment of a lithium cobalt oxide and a lithium buffer material to make equilibrium of a lithium chemical potential there between; a lithium buffer material which acts as a Li acceptor or a Li donor to remove or supplement Li-excess or Li-deficiency, coexisting with a stoichiometric lithium metal oxide; and a method for preparing a LiCoO2-containing powder. Further, provided is an electrode comprising the above-mentioned LiCoO2-containing powder as an active material, and a rechargeable battery comprising the same electrode.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 13, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Jens M. Paulsen, Sun Sik Shin, Hong-Kyu Park
  • Patent number: 8932482
    Abstract: A paste suitable for a negative plate of a lead-acid battery, the paste comprising lead oxide and carbon black, wherein the carbon black has the following properties: (a) a BET surface area between about 100 and about 2100 m2/g; and (b) an oil adsorption number (OAN) in the range of about 35 to about 360 cc/100 g, provided that the oil absorption number is less than the 0.14×the BET surface area+65.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: January 13, 2015
    Assignee: Cabot Corporation
    Inventors: Paolina Atanassova, Berislav Blizanac, Miodrag Oljaca, Toivo T. Kodas, Geoffrey D. Moeser, Pavel A. Kossyrev, Ned J. Hardman
  • Patent number: 8926870
    Abstract: Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: January 6, 2015
    Assignee: Sandia Corporation
    Inventors: James L. Krumhansl, Tina M. Nenoff
  • Patent number: 8926868
    Abstract: A superconducting article comprises a substrate, a buffer layer overlying the substrate, and a high-temperature superconducting (HTS) layer overlying the buffer layer. The HTS layer includes a plurality of nanorods. A method of forming a superconducting article comprises providing a substrate, depositing a buffer layer overlying the substrate; forming a nanodot array overlying the buffer layer; depositing an array of nanorods nucleated on the nanodot array; and depositing a high-temperature superconducting (HTS) layer around the array of nanorods and overlying the buffer layer.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 6, 2015
    Assignees: University of Houston System, Superpower, Inc.
    Inventors: Venkat Selvamanickam, Goran Majkic, Maxim Martchevskii
  • Patent number: 8920683
    Abstract: A sputtering target which is composed of a sintered body of an oxide which contains at least indium, tin, and zinc and includes a spinel structure compound of Zn2SnO4 and a bixbyite structure compound of In2O3. A sputtering target includes indium, tin, zinc, and oxygen with only a peak ascribed to a bixbyite structure compound being substantially observed by X-ray diffraction (XRD).
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: December 30, 2014
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Koki Yano, Kazuyoshi Inoue, Nobuo Tanaka, Akira Kaijo, Satoshi Umeno
  • Patent number: 8916062
    Abstract: A composition for forming an electrode. The composition includes a metal fluoride, such as copper fluoride, and a matrix material. The matrix material adds capacity to the electrode. The copper fluoride compound is characterized by a first voltage range in which the copper fluoride compound is electrochemically active and the matrix material characterized by a second voltage range in which the matrix material is electrochemically active and substantially stable. A method for forming the composition is included.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: December 23, 2014
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Wei Tong, Steven Kaye, David Keogh, Cory O'Neill
  • Patent number: 8906270
    Abstract: The invention relates generally to a polymeric composition and a method for making and using the polymeric composition, more specifically to a polymeric composition and a method for making and using the polymeric composition in the form of a membrane.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: December 9, 2014
    Assignee: Colorado School of Mines
    Inventors: Gregory J. Schlichting, Andrew M. Herring
  • Patent number: 8906273
    Abstract: A method of making a thermoplastic composition comprises melt extruding a poly(arylene ether) powder to form a first pelletized poly(arylene ether); and melt extruding the first pelletized poly(arylene ether) to form a second pelletized poly(arylene ether), wherein the second pelletized poly(arylene ether) has a level of butyraldehyde less than the first pelletized poly(arylene ether) and the second pelletized poly(arylene ether) has a level of trimethylanisole less than the first pelletized poly(arylene ether).
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: December 9, 2014
    Assignee: Sabic Global Technologies B.V.
    Inventors: Montgomery M. Alger, Robert Hossan, Torben P. Kempers, Geoffrey H. Riding, David J. Swanson, Michael L. Todt
  • Patent number: 8906254
    Abstract: Disclosed are a cathode material for a secondary battery, and a manufacturing method of the same. The cathode material includes a lithium manganese phosphate LiMnPO4/sodium manganese fluorophosphate Na2MnPO4F composite, in which the LiMnPO4 and Na2MnPO4F have different crystal structures. Additionally, the method of manufacturing the cathode material may be done in a single step through a hydrothermal synthesis, which greatly reduces the time and cost of production. Additionally, the disclosure provides that the electric conductivity of the cathode material may be improved through carbon coating, thereby providing a cathode material with excellent electrochemical activity.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 9, 2014
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Sa Heum Kim, Dong Gun Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 8906269
    Abstract: The present invention relates to a paste and a solar cell using the paste. The paste according to an embodiment of the present invention comprises three and more than aluminum powders having different shape, size, and type, a glass frit, and an organic vehicle, wherein the aluminum powers includes a first powder of 40 to 50 wt %, a second powder of 20 to 30 wt %, and a third powder of 0.1 to 2 wt %, and the first to third powders have one or more than different shapes of a globular shape, a flat shape, a nano shape, and combinations thereof.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: December 9, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: In Jae Lee, Jin Gyeong Park, Jun Phil Eom, Soon Gil Kim
  • Patent number: 8900489
    Abstract: The present application provides nitride semiconductor nanoparticles, for example nanocrystals, made from a new composition of matter in the form of a novel compound semiconductor family of the type group II-III-N, for example ZnGaN, ZnInN, ZnInGaN, ZnAlN, ZnAlGaN, ZnAlInN and ZnAlGaInN. This type of compound semiconductor nanocrystal is not previously known in the prior art. The invention also discloses II-N semiconductor nanocrystals, for example ZnN nanocrystals, which are a subgroup of the group II-III-N semiconductor nanocrystals. The composition and size of the new and novel II-III-N compound semiconductor nanocrystals can be controlled in order to tailor their band-gap and light emission properties. Efficient light emission in the ultraviolet-visible-infrared wavelength range is demonstrated.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: December 2, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Peter Neil Taylor, Jonathan Heffernan, Stewart Edward Hooper, Tim Michael Smeeton